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Abstract—This paper discusses different agents that can be
used for evaluating game metrics through self-play efficiently.
The focus is on evaluating game length for a multitude of games,
using the Ludii framework. This paper also introduces Heuristic
Sampling, which bases decisions on heuristic evaluations of a
subset of moves on the board. When compared to more rigorous
methods like Alpha-Beta and UCT, Heuristic Sampling produces
similar results up to thousands of times more efficiently.

Index Terms—AI, Board Games, Game Length, Ludii

I. INTRODUCTION

A. Overview

Ludii [10] is a complete general game system implemented
in Java. Ludii comes with an interface for playing games
written in the Ludii game description language. It also provides
a framework for agents to return a move given a board state
for a multitude of board games. These board games come
from a variety of backgrounds and are played on different
boards, with different pieces, rules, and end conditions. Ludii
can also be used to generate new game syntax, which can then
be compiled and used to evaluate if the game is playable. This
framework is particularly useful for evaluating certain metrics
of board games, by running a certain number of trials and
averaging out the results.

The Digital Ludeme Project [8] focuses on the “Digital
Archaeoludology” of ancient board games. The artefacts from
these games are often incomplete, and several possible rule
sets can be generated. These different rule sets can then be
evaluated and can provide useful information for finding the
most likely version of the original game, such as looking for
rule sets that have similar metrics to known games in the same
period.

Section II gives an overview of current techniques used
for evaluating games and explains the issue of Monte Carlo
resistance in games. Section III introduces three agents for
game evaluation, including Heuristic Sampling and the concept
of Same-Turn Continuation. The setup of the experiments is
explained in Section IV, and the last three sections then go
over the results, discussion, and conclusion.

B. Problem Statement

Ludii’s current approach to evaluating game metrics is
through self-play, by running multiple playouts and averaging
out the metrics of each playout. At each iteration, Ludii lets
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the agent that is at play take a move with an enforced time
limit. The move is then applied and the board state updated.

Ludii comes with a multitude of built-in agents. The Ludii
AI selects the best-known agent for each given game and
defaults to Upper Confidence Tree (UCT) if the game is
unknown. Ludii has two main types of AI agents: those based
on traditional tree-based methods (e.g., minimax, Alpha-Beta)
and those based on Monte Carlo methods (e.g., Monte Carlo
Tree Search, UCT, etc.). The Random agent can be used to
quickly run a large number of playouts, but its results will
likely be inaccurate as the choice of moves is significantly
different from the one of a human player. A more advanced
agent will give much better results but takes a much longer
time to run, as choosing a move is more computationally
expensive than at random. The goal is to achieve fast playouts
that give plausible results.

Game metrics such as game length vary from player to
player and are by no means universal. One of the goals of
this paper is to reach results similar to the ones given by UCT
and Alpha-Beta.

C. Research Questions

The following research questions addressed:
1) What is an efficient method for estimating plausible

game lengths for general games in terms of accuracy?
2) Can we undersample the available move set for each

state while retaining plausible results?
3) Is Heuristic Sampling without lookahead sufficiently

strong for evaluating game metrics?

D. Motivation

Given the complexity of different rules for each game, a
mathematical approach, such as the one used by Stanford’s
Game Definition Language [15], is unfeasible and would
require too much time to run. Currently, all agents included in
the Ludii framework were designed to win as many games as
possible. The objective of the agent is different when designing
an agent for evaluating game metrics.

One of the most commonly used approaches for evaluating
moves is by running random playouts. This gives inaccurate
results in multiple scenarios, such as for Monte Carlo resistant
games, which will be defined in the next section. It is hence
important to identify such games to avoid the risk of getting
worse evaluations by increasing the number of playouts. More
complex agents such as UCT or Alpha-Beta can also be used
to evaluate games. Such agents will give more sensible results



Fig. 1: A 5 × 5 hex board in a Monte Carlo resistant state.
White’s turn.

than random, but take too much time on a standard consumer
machine.

II. BACKGROUND

Writing programs that could play games has been one of the
earliest goals in Artificial Intelligence. As such, the success
of Deep Blue in 1997 and Alpha Go [22] in 2015 are still
considered some of the biggest achievements in the field of
Artificial Intelligence [12]. Despite being able to beat humans
at Chess and Go respectively, these two agents are unable
to generalize their knowledge to any other game. General
Game Languages had as one of their main goals to provide a
general framework that agents could use to play a multitude
of different games. The AI then needed to be general enough
to play many different games. Some early attempts include
Zillions of Games (2003) [16] and Stanford’s Game Definition
Language [15]. The latter describes every game state as a
series of facts, and the mechanics as logical rules. This makes
it possible to mathematically prove some properties of the
game, but has two major drawbacks: writing all the possible
state transitions makes the game description long and hard
to read, and computing all the logical values at every state is
computationally expensive and makes running trials very slow.

Ludii offers a solution to the problems above: every game
is described as a collection of ludemes and the framework for
running games is considerably fast for running trials [17] [11].

Much research on these frameworks has been done to beat
humans at games, or more generally to be used to compete
against other agents. Recently, most agents have been designed
for video-game playing [19].

A. Monte Carlo resistance in games

The use of Random playouts to evaluate metrics of games is
still common in literature [5]. There exist certain games where,
given a specific board states, increasing the number of random
playouts will result in a worse evaluation of moves by looking
at the winning rate. These games can be said to be Monte-
Carlo resistant, a term provided to me by my supervisor [7].

To check if a game is Monte Carlo resistant, the following
experiment can be conducted:

1) Generate a random state by applying a random number
of random (legal) moves.

2) Letting an “expert” AI (chosen by Ludii AI) evaluate
the moves (with a 10min thinking time) for the given
state and subsequently make a ranking of every move.

3) Iterate through multiple random playouts for each legal
move, storing and updating the win rate for that move
after each iteration.

4) Compute and plot the error between the ”expert” rank-
ing and the ranking from random playouts after each
iteration.

Fig. 1 shows a 5x5 Hex board in the Ludii General Game
System. With the assumption that black plays with an optimal
strategy, adding a piece to 1 or 8 will lead to a loss, and
to 4 can lead to a win [7]. After running multiple random
playouts, the winning rate of move 4 becomes much lower
than the winning rate of move 8. Hex is hence a Monte Carlo
resistant game.

Another game that is known to be Monte Carlo resistant
is Yavalath. In Yavalath, players must place four pieces in a
row without first making three in a row to win. [6]. Random
playouts tend to disfavour making a line of 2 since it tends to
lead to a loss (line of 3), although that is necessary to reach
the winning state (line of 4) [5].

III. METHODOLOGY

As shown above, the biggest problem with random playouts
is that it can often select losing moves that no human player
would choose. The first naive approach to improve random
without compromising speed is to only select non-losing
moves. This results in a very ”cautious” AI, or ”Safe” AI.

A. Safe AI

Algorithm 1 Safe AI

1: for each state Sn do
2: generate the set of available actions A
3: loop |A| times
4: select an action a from A at random
5: apply a to Sn to give Sna

6: if Sna
is a losing state then

7: remove a from A
8: else
9: return a

10: end if
11: end loop
12: return random action a′ from available actions
13: end for

This is the first, simplest improvement to the random agent.
Instead of immediately returning a move after selecting the
move at random, the move is first applied and if it leads to a
loss another random move is selected.



B. Opportunistic AI

A more opportunistic behaviour can be implemented by
looking for moves that lead to a win in addition to moves that
lead to a loss. When given a board state, this Opportunistic AI
avoids moves that lead to a loss, plays moves that lead to a win
if they exist or plays a random move otherwise. Pseudocode
of the Opportunistic AI can be seen in Algorithm 2.

Algorithm 2 Opportunistic AI

1: function FILTERACTIONS(actions A, depth d)
2: for each action a in A do
3: apply a to Sn to give Sna

4: if Sna is a winning state then
5: return a
6: else if Sna

is a losing state then
7: remove a from A
8: else if d > 1 then
9: generate set of actions A′ for next mover

10: futureAction ← FILTERACTIONS(A′, d− 1)
11: if player is nextPlayer then
12: if A′ is empty then
13: futureWinningAction ← a
14: else if futureAction is not null then
15: remove a from A
16: end if
17: else if futureAction is not null then
18: return a
19: end if
20: end if
21: end for
22: return futureWinningAction
23: end function
24: for each state Sn do
25: generate the set of available actions A
26: winningAction ← FILTERACTIONS(A, n)
27: if winningAction is not null then
28: return winningAction
29: else
30: return random action a′ from A
31: end if
32: end for

For games that have a very large branching factor (such as
Go), evaluating all moves with depth greater than one takes
a long time to run. Sampling a fraction of moves is then
necessary to preserve a fast runtime. Another issue with the
Opportunistic AI is that for most games where winning and
losing moves only appear after a certain number of moves, it
will return random moves with a much slower runtime. This
led to the idea of quickly evaluating a subset of moves with
heuristic functions.

C. Heuristic Sampling

The following idea about Heuristic Sampling (HS) can be
found in [9], a paper co-authored with my supervisor Cameron
Browne currently submitted to IEEE COG 2021.

Algorithm 3 Heuristic Sampling without STC

1: for each state Sn do
2: generate the set of available actions A
3: loop max(2, |A|/n) times
4: select an action a from A at random
5: apply a to Sn to give Sna

6: if Sna
is a winning state then

7: return a
8: else if Sna

is not a losing state then
9: compute heuristic estimate of Sna

10: end if
11: end loop
12: return action a′ with highest seen heuristic estimate
13: end for

Heuristic Sampling requires a heuristic function that evalu-
ates a state S of a game for a certain player. Further description
of HS can be found in [9]. HS1/n denotes the fraction of
moves taken into account for evaluation of each board state.

The simplicity of Algorithm 3 is an attractive feature for
implementing such an agent. It is as short as Algorithm 1 but
has a more sophisticated move selection. It is worth noting
that for n = 1 it acts like Alpha-Beta search of depth one.

D. Same-Turn Continuation

Same-Turn Continuation (STC) involves the current mover
repeatedly moving again until it is another player’s turn to
move [17].

There exist many games that require STC. In some games
of capture, for example Nine Men’s Morris, making a line
of three triggers a capture move by the same player. When
evaluating a move, it is important to compute the heuristic
evaluation of the board at the end of the player’s turn instead
of just after the immediate move, as the heuristic evaluation
of the first move often gives poor results. This is the case
of Nine Men’s Morris, where strong moves are preceded by
weaker dependant moves. A similar principle to Same-Turn
Continuation is quiescence search, where the search continues
until a “quiet” state is reached [3].

IV. EXPERIMENTS

A. Games

Experiments were run using the Ludii general game system1

on the following 2-players, fully observable, deterministic
games pictured in Figure 2:

1) Tic-Tac-Toe: Players alternate adding their distinctive
piece on a 3× 3 board. The first player to do a line of
three wins [4]. Tic-Tac-Toe has a relatively small game
tree complexity of ≈ 105 with an average game length
of 6 plies (both players play optimally, resulting in a
draw).

2) Connect4: Players alternate dropping their coloured
discs from the top of a 6 × 7 grid. The first player to

1https://ludii.games
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(a) Tic-Tac-Toe (b) Connect4 (c) English Draughts
(d) Nine Men’s
Morris (e) Halma

(f) Lines of Action (g) Gomoku (h) Chess (i) Shogi

Fig. 2: Board states of tested game from the Ludii Player.

create a row of four disks in their colour wins [1]. The
expected number of plies is 36. Connect4 has a game
tree complexity of ≈ 1021 [2].

3) English Draughts: Each player has twelve pieces on a
8×8 board. Adjacent opponent’s pieces must be captured
when possible by hopping on them. Pieces that reach the
opposite side of the board can move backwards. The first
player without pieces loses [4]. The average number of
plies is 70. The game tree complexity is ≈ 1031 [18].

4) Nine Men’s Morris: Each player’s goal is to eliminate all
opponent’s pieces from the board, by making a line of
three and subsequently removing a piece of their choice
that is not in a line. Each player starts by placing their 9
pieces and then moves them to empty orthogonal spots
on the board [4]. The expected number of plies is 50,
and the game tree complexity of ≈ 1050 [2].

5) Halma: Played on a reduced 6× 6 board, each player’s
goal is to move their 4 pieces in the opponent’s side of
the board by either moving or jumping on any adjacent
piece. Multiple jumps are allowed [13]. The game tree
complexity and expected length are unknown.

6) Lines of Action: A player wins if they connect all of their
pieces contiguously on a 8 × 8 board. Each piece can
move by exactly the number of pieces that are present
in the direction it is moving. Opponent’s pieces can be
captured [4]. The expected number of plies is 44, and
the game tree complexity is ≈ 1064 [23].

7) Gomoku: Players alternate placing pieces of their own
colour on a 15 × 15 Go board. First to line 5 in a row
wins. The expected number of plies is Lexp = 30, and
the game tree complexity is ≈ 1070 [2].

8) Chess Standard game on 8×8 board using FIDE rules.
The expected number of plies is 70, and the game tree
complexity is ≈ 10123 [20].

9) Shogi: Game of war played on a standard 9×9 board.
The expected number of plies is 115, and the game tree
complexity is ≈ 10226 [14].

B. Heuristics
Fifteen Ludii in-built heuristics from Ludii were used for

Heuristic Sampling. These heuristics include [10]:
• CentreProximity: proximity of the pieces to the centre of

the board. This is of particular use in Lines of Action,
where a possible strategy is to connect pieces in the
centre.

• CurrentMoverHeuristic: adds weight only for the player
whose turn it is in any given game state.

• LineCompletionHeuristic: player’s potential to complete
lines up to a given target length. This heuristic is essen-
tial for Tic-Tac-Toe, Connect4, Nine Men’s Morris and
Gomoku.

• PlayerRegionsProximity: proximity of pieces to the re-
gions owned by a particular player. This is of particular
use for Lines of Action and Halma, where all pieces need
to be connected.

• Material: material that a player has on the board and in
their hand. This plays a major role in Chess, where each
piece has a different score.

• OwnRegionsCount: sum of all counts of sites in a player’s
owned regions. In Nine Men’s Morris and English
Draughts the player with most pieces on the board is
often in a better position.

• SidesProximity: proximity of pieces to the sides of a
game’s board.



• CornerProximity: proximity of pieces to the corners of
a game’s board. The goal of Halma, for example, is to
bring all pieces to the Opponent’s corner.

• Influence: total number of distinct spots that can be
reached, divided by the total number of moves. In Halma,
Chess and Shogi this is an important factor to determine
if a state is promising.

• MobilitySimple: number of moves that a player has in a
current game state.

• RegionProximity: proximity of pieces to a particular
region. In Halma, pieces need to reach the opponent’s
region.

Each game has a predefined set of these heuristics in Ludii
learnt per game through gradient descent. These learned
weights are often competent, but not overly strong for all
states.

C. Experiment setup

Each of the following agents ran 100 trails against them-
selves on the games described in subsection IV-A:

1) Random
2) Heuristic Sampling: HS1/2, HS1/4 and H1/8 with

Same-Turn Continuation.
3) Standard Alpha-Beta: AB1, AB2 and AB3

4) UCT : Standard UCT search with a budget of 1,000
iterations per move using uniformly random playouts
and a default exploration constant of C =

√
2.

A limit of 1,000 turns was applied for all trials except for
Random search; any trial that exceeded this turn limit was
abandoned as a draw and excluded from the sample.

Timings were taken on a standard consumer machine with
six 2.9 GHz i9 cores, similar to machines that Ludii users
performing reconstruction tasks will typically use.

V. RESULTS

Early results showed that the Opportunistic AI took on
average more than 3 times the amount of time it took Heuristic
Sampling 1/2 with Same-Turn Continuation to run a playout,
without giving better results. Safe AI returned results in a
much shorter period of time, but with results almost identical
to Random playouts. They were hence excluded from every
further experiment.

Results from experiments conducted to evaluate Heuristic
Sampling can be found in Table I. AB1, AB2 and AB3 refer
to Alpha-Beta search with depth 1, 2 and 3. For each game,
the expected length Lexp (in plies) is given as well as the
observed length Lobs (in turns) of each agent, computed by
the average of N completed trials N . The table also contains
information on minimum and maximum observed lengths,
standard deviation (SD), standard error (SE) and average time
per trial in seconds. The observed length for each game is
plotted in Fig. 3. The dotted red line represents the expected
length of each game, when available.

Agents are ordered by least to most computations required
to return a move, from Random to UCT. Fig. 5 shows the
cumulative time it took in milliseconds to perform a playout

for all games, on a logarithmic scale. As expected, the values
are in increasing order. Adding a level of depth search in
Alpha-Beta increases the runtime by a factor of around 11,
and increasing the samples by a factor of two approximately
doubles the runtime of Heuristic Sampling.

Random Playouts return the highest estimate for six out of
nine games, with values disproportionately higher for Shogi
and Halma. For the games of Tic-Tac-Toe, Chess, Connect4
and Shogi, more sophisticated agents return a value closer to
the expected value. That is not the case for the game of English
Draughts, where UCT gives an estimate more than twice as
high as the expected value, and Nine Men’s Morris, where
Alpha-Beta of depth three returns results that are much worse
than Alpha-Beta of depth two.

Fig. 6 and Fig. 3 reveal that HS without STC (SHS)
performs almost no better than Random for the game of Nine
Men’s Morris with chained action sequences per turn. Without
STC, increasing the subset of moves taken at each turn does
not improve the observed value.

A sum of absolute errors (|Lobs − Lexp|) can be seen in
Fig. 4. Results for English Draughts and Lines of Action
where UCT returns an uncommonly high value result in UCT
having a worse error than all Alpha-Beta agents and Heuristic
Sampling of size 1

2 and 1
4 .

VI. DISCUSSION

Safe AI gave fast results, but returned estimates close to
Random Playouts. Opportunistic Playouts did not meet the
requirement of giving results in a short time. The main issue
with Opportunistic Playouts is that their evaluation is useless
for most of the states, in games where the winning or losing
moves can only be reached after a certain number of moves.
For board states where such moves do not exist, the agent
wastes time iterating through all moves only to return a purely
random one.

Heuristic Sampling on the other hand can run trials in
less than half the amount of time than Alpha-Beta and more
than two thousands times faster than UCT. It is no surprise
that UCT and Alpha-Beta return better results than Heuristic
Sampling for most games, although Heuristic Sampling with
STC outperforms Alpha-Beta for Nine Men’s Morris, and
returned values are not too far apart.

Fig. 4 shows misleading results, as it makes it look like
UCT performs much worse than Alpha-Beta. As explained
in the section above, this is only due to two games where
UCT returns an extremely large number: English Draughts
and Lines of Action. A better metric should be found to better
compare agents.

With a few exceptions, larger samples of moves give better
results than smaller samples for Heuristic Sampling. The dis-
tance between estimates is generally fairly small, and smaller
sampling ratios can be preferred when focusing on speed.

What is interesting to note is that Heuristic Sampling
sometimes returns results faster than Random playouts. It is
the case for Halma and Nine Men’s Morris, where Random
playouts take a longer time to run as their expected number of
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Fig. 3: Mean number of turns per playout for each method applied to each game [9].
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moves is much higher. In general, Heuristic Playouts converge
to a result more quickly than Random. Surprisingly, increasing
the depth of Alpha-Beta search produces worse game length
estimates for many games. A possible explanation for this is
the “Odd-Even Effect” in Alpha-Beta search, in which odd
search depths can give overly optimistic results, while even
search depths can give overly pessimistic results.2

Same-Turn Continuation seems to give major improvements
for games that have consecutive moves of the same player.
As can be seen in Fig. 6 and 3, increasing the proportion
of sampled moves does not improve the results of Heuristic
Samplings without STC for Nine Men’s Morris. The observed
value without Same-Turn Continuation is very close to the one
from Random Playouts.

2https://www.chessprogramming.org/Odd-Even Effect
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VII. CONCLUSION

While Safe AI and Opportunistic Playouts did not show
any benefits for estimating game length, they did prove to be
important stepping stones for developing Heuristic Sampling.
Results suggest that Heuristic Sampling with Same-Turn Con-
tinuation produces game length estimates similar to UCT and
Alpha-Beta, with speed comparable to Random Playouts.

Undersampling plays a major role in improving the speed
of playouts but leads to overall slightly worse results. HS1/2

and HS1/4 should be considered for fast evaluation of games
similar to the ones tested in the experiments, as they give
similar results and can be picked depending on whether the
main focus is speed or accuracy.

Same-Turn Continuation leads to stronger heuristic evalua-
tions of boards for games such as Nine Men’s Morris, with
stronger moves contingent on sequence of weaker moves,

https://www.chessprogramming.org/Odd-Even_Effect
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Fig. 6: Effect of STC on Heuristic Sampling for Nine Men’s
Morris.

providing better results to Heuristic Sampling than Alpha-Beta
of depth 3.

A. Future Work

Although initial results seemed to disfavour Opportunis-
tic Playouts for game evaluation, they should be properly
compared to Heuristic Sampling for other game estimates
than game length. What also turned out to be interesting
is that given a one-second time limit, Monte Carlo Tree
Search (MCTS) with Opportunistic Playouts of depth seems
to outperform other agents including UCT for certain games,
which suggests that MCTS with HS playouts could give even
stronger results.

It is also important to evaluate the impact of training
heuristic functions for a new game on the total time it takes
to evaluate a game. This is expected to take a short period of
time, and similar heuristics are likely to be shared by games
with similar concepts [21]. Heuristic Sampling should also be
tested on a wider range of games, with the focus on evaluating
flawed rule sets.
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TABLE I: Mean number of turns per game, per playout method (reprinted from [9]).

Game Method Lobs N Min Max SD SE Time
Random 7.62 100 5 9 0.142 0.278 0.000148s
HS1/8 6.88 100 5 9 0.132 0.259 0.000621s

Tic-Tac-Toe HS1/4 7.05 100 5 9 0.139 0.272 0.000640s
HS1/2 6.88 100 5 9 0.155 0.303 0.000769s

Lexp = 9 AB1 7.05 100 5 9 0.185 0.363 0.000583s
AB2 9 100 9 9 0.0 0.0 0.000929s
AB3 8.22 100 7 9 0.098 0.192 0.00312s
UCT 9 100 9 9 0.0 0.0 0.0294s
Random 20.46 100 7 37 0.729 1.428 0.000226s
HS1/8 20.02 100 7 42 0.719 1.41 0.000736s

Connect4 HS1/4 19.29 100 7 42 0.697 1.37 0.000709s
HS1/2 19.81 100 7 42 0.97 1.90 0.000996s

Lexp = 36 AB1 16.88 100 11 29 0.564 1.11 0.00109s
AB2 13 100 13 13 0.0 0.0 0.00250s
AB3 22.45 100 7 42 1.204 2.36 0.190s
UCT 32.75 100 17 42 0.601 1.178 0.403s
Random 71.3 100 37 161 3.12 6.12 0.00192s
HS1/8 70.5 100 35 145 2.54 4.99 0.00572s

English Draughts HS1/4 65.2 100 33 197 2.41 4.71 0.00606s
HS1/2 70.5 100 37 139 2.25 4.4 0.00943s

Lexp = 70 AB1 67.2 100 43 105 1.76 3.454 0.00948s
AB2 67.0 93 47 87 1.64 3.22 0.00784s
AB3 94.0 63 74 158 2.042 4.002 0.418s
UCT 194.0 92 53 879 16.424 32.19 13.9s
Random 183.2 100 56 790 11.801 23.13 0.00432s
HS1/8 101.0 100 36 431 6.22 12.2 0.00176s

Nine Men’s Morris HS1/4 95.9 100 36 273 4.57 8.96 0.00215s
HS1/2 58.9 100 30 173 2.44 4.78 0.00349s

Lexp = 50 AB1 170.6 100 43 532 10.2 19.9 0.00491s
AB2 41.9 100 20 65 0.909 1.78 0.00481s
AB3 175.2 84 44 963 19.9 39.1 0.377s
UCT 54.8 100 31 149 2.22 4.34 6.86s
Random 333.0 100 77 923 15.22 29.83 0.00435s
HS1/8 70.84 100 36 140 2.09 4.10 0.00163s

Halma HS1/4 46.1 100 26 97 1.19 2.33 0.00135s
HS1/2 37.8 100 20 71 1.011 1.98 0.00133s

Lexp = ? AB1 20.9 100 14 26 0.272 0.532 0.00116s
AB2 23.2 45 17 36 0.653 1.28 0.0463s
AB3 31.4 23 20 70 2.69 5.27 0.470s
UCT 134.83 88 29 922 16.9 33.1 45.5s
Random 208.3 100 49 417 7.734 15.158 0.00896s
HS1/8 66.6 100 32 150 2.518 4.94 0.00424s

Lines of Action HS1/4 38.5 100 23 77 1.02 2.00 0.00353s
HS1/2 30.6 100 23 43 0.418 0.82 0.00440s

Lexp = 44 AB1 28.1 100 22 38 0.307 0.602 0.00762s
AB2 43.8 97 22 163 2.13 4.181 0.200s
AB3 38.8 98 23 73 0.778 1.53 1.24s
UCT 161.0 100 30 518 10.6 20.7 184.4s
Random 112.2 100 52 171 2.64 5.17 0.000353s
HS1/8 28.1 100 10 57 0.862 1.69 0.00360s

Gomoku HS1/4 24.6 100 10 43 0.708 1.39 0.00736s
HS1/2 20.8 100 10 43 0.608 1.19 0.0105s

Lexp = 30 AB1 20.9 100 13 45 0.653 1.28 0.0125s
AB2 26.5 100 13 81 1.35 2.65 0.141s
AB3 56.9 100 11 113 2.73 5.36 2.28s
UCT 41.47 100 20 70 1.12 2.20 0.904s
Random 429.5 100 54 739 13.2 25.9 0.0243s
HS1/8 309.1 100 5 516 10.7 21.0 0.0317s

Chess HS1/4 238.0 100 16 471 11.1 21.7 0.0376s
HS1/2 248.6 100 16 435 10.8 21.2 0.0800s

Lexp = 70 AB1 216.8 100 12 459 10.2 20.1 0.020s
AB2 142.3 100 22 501 9.58 18.8 0.564s
AB3 144.8 100 24 402 7.92 15.5 6.93s
UCT 149.8 100 9 532 11.4 22.3 25.7s
Random 756.4 100 100 2501 68.5 134.3 0.172s
HS1/8 187.9 100 75 587 9.5 18.6 0.593s

Shogi HS1/4 171.4 100 31 459 8.80 17.3 1.18s
HS1/2 155.0 100 22 533 9.14 17.9 2.50s

Lexp = 115 AB1 161.1 100 38 871 10.8 21.2 5.17s
AB2 172.3 96 30 728 10.9 21.3 60.1s
AB3 94.0 10 38 114 8.26 16.194 751.5s
UCT 140.1 10 77 218 14.2 27.7 4,790.9s
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