
General Game Playing with imperfect information in
GROOVE
Jorrit van Assen
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

ABSTRACT
General Game Playing is concerned with the exploration
of strategies that perform well over a multitude of games.
To make sure that these games can be understood by the
strategies, a general description language is required to
capture the games. A range of languages have been pro-
posed, most notably the Game Description Language of
the Stanford Logic Group. In recent years these languages
were used for the research into games with imperfect infor-
mation. Groove grammars can be used to capture systems
in graphs and graph transformations. This would allow
for application of graph tools on the games and its strate-
gies. This paper proposes a structure for describing perfect
and imperfect information games using Groove grammars.
This structure will be used to model Connect Four and Si-
multaneous Krieg Tic-tac-toe. The models will be verified
by matches between three types of general game players:
a legal move, random move and a Lookahead player.

Keywords
General Game Playing, Imperfect Information Games,
GROOVE

1. INTRODUCTION
A lot of computer players are designed for a single game.
This means that their respective strategies are optimised
for one specific game and are not suitable for others. For
a lot of games, optimal strategies have been researched
and a lot of knowledge has been gathered from analysing
those games. For some games, computers have vastly out-
performed human players. Chess is an example of this.
Stockfish 13, one of the strongest computer engines in the
world, is a far stronger blitz player than even the best blitz
professional in the world [2, 7]. However, Stockfish 13 is
only good at playing chess variants. General Game Play-
ing (GGP) takes a more general approach to generating
strategies.

General Game Playing is a research topic in which com-
puter controlled agents are developed which perform well
in a range of games, which they have possibly not played
before [5]. An AI which could learn from doing one task
and apply this knowledge to another would be beneficial.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
35th Twente Student Conference on IT Jul. 2nd, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Instead of training a new AI from scratch for every new
scenario, the problem is described in a specific structure
and the AI would be designed to be able to solve problems
in this structure. This kind of intelligence is more similar
to how humans approach new problems. We try to struc-
ture the problem and solve it using similar situations in
the past. The ability of computers to learn like humans is
called General Artificial Intelligence. By researching Gen-
eral Game Playing it is hoped to come closer to creating
General Artificial Intelligence [13].

One of the main requirements for General Game Playing
is thus that the language can be used to model a wide vari-
ety of games. One of the most used languages is the Game
Description Language (GDL) developed by the Stanford
Logic Group of the Stanford University. One of the rea-
sons why GDL is widely used by GGP algorithms is be-
cause of its use in the International General Game Playing
Competition. This was an annual competition organised
by the Stanford Logic Group from 2005 until 2016. GDL
uses logic to describe the game using an initial state, win-
ning conditions, as well as the legal moves of the players
[9]. Reasoners can be used to discover legal moves for
a given game description and state. These reasoners are
utilised by the General Game Players in order to find the
best moves for a player. The players employ different tac-
tics for evaluating the moves. In 2007, CadiaPlayer won
the competition using a Monte Carlo Tree Search with
Upper Confidence bounds applied to Trees (UCT) sim-
ulation technique for move selection [3], a technique that
uses random playouts of the match to estimate the quality
of the moves. This technique has later been successfully
combined with deep learning for AlphaGo [14]. The last
competition in 2016 was won by WoodStock, who con-
verted GDL into Stochastic Constraint Satisfaction Prob-
lems which could be solved to find optimal moves [8].

The last decade has seen an increase in research done into
General Game Playing, specifically in the research into
games with imperfect information. For games with per-
fect information, the current state of the game is fully
visible to all players, but for imperfect information there
is an asymmetry in the knowledge of the players. An ex-
ample of a game with imperfect information is Texas hold
’em1. In this game the players do not know their oppo-
nents cards and which cards are in the flop, river or turn.
The players have to adapt their strategies and take into
account the possibility of an opponent with a strong hand.
General Game Languages need to be adjusted to allow for
those type of games. Thielscher describes in 2011 an ex-
tension for GDL called GDL-II which allows for imperfect
information games to be modelled [15]. A more recent
language is Ludii, proposed in 2020 as part of the Digital

1https://en.wikipedia.org/wiki/Texas_hold_’em

1

https://en.wikipedia.org/wiki/Texas_hold_'em


Ludeme Project [11]. This language can also be used both
for perfect and imperfect infomration games.

GROOVE is a toolset created for the use of verifying
object-oriented systems using graph transformations. Be-
cause the tool was designed with extensibility in mind [12]
the toolset has evolved and is now used for many more
purposes. It can now be described as a ”general purpose
graph transformation tool” [6] enabling its users to create
graphs and rules to explore the state space. This feature
makes it suitable for playing board games. Game rules
can be translated into graph transformations and the ini-
tial state as a graph. Afterwards, GROOVE can be used to
simulate the game and inspect the legal moves and states.
This is a rather intuitive way of programming the rules
of the game and could serve as an alternative to Game
Description Languages like GDL-II and Ludii. Although
these last two specifications are optimised for games, the
generality of GROOVE could also prove more flexible.

The goal of this paper is to investigate how Groove can
be used for General Game Playing with imperfect infor-
mation. This leads to the following questions:

1. How can GROOVE be connected to a General Game
Playing algorithm with perfect information?

2. How can games with imperfect information be mod-
elled in GROOVE?

3. How can a General Game Playing algorithm be adapted
to play games with imperfect information?

In this paper, we propose a set of conditions under which
Groove grammars representing perfect and imperfect in-
formation games can be played using our match-manager.
We demonstrate this by modelling two example games in
Groove, Connect Four and Simultaneous Krieg Tic-tac-
toe, and playing these games using three general game
players. The paper first introduces Groove and the re-
quirements for General Game Playing in section 2. Sec-
tion 4 proposes the conditions for the Groove grammars
for managing perfect information games, three simple gen-
eral game players and the describes the implementation
for Connect Four. Adjustments to the conditions for the
grammars and subsequent changes to the players are made
in section 5. This section also describes the implementa-
tion of Simultaneous Krieg Tic-tac-toe. In section 6 the
games and players are validated, related work is described
in section 7 and the findings of this paper are discussed in
section 8. Finally, the paper is concluded in section 9.

2. BACKGROUND
2.1 Groove
Groove is built around the concept of Graph Transition
Systems. All states of a GTS are captured in graphs [12]
and the states are connected by transitions. Transitions
apply a certain rule to a source to reach a target state. The
grammar consists of initial states and rules and Groove
can be used to explore the state space of the grammar.
An example of a partly explored state space is shown in
figure 1.

In a GTS the initial state is captured using a graph. This
graph consists of nodes and edges. Each node has an iden-
tity and, possibly, a type. Nodes can have labels or flags,
which is stored as a self edge, or an edge to another node.
All edges require a label. An example of a state is in figure
2.

Figure 1. A partly explored state space of three by two
Connect Four.

Figure 2. A three by two Connect Four start graph in
Groove.

Figure 3. A graph for the ”move” rule of Connect Four in
Groove.

2



Figure 4. Fragment of the Control program of Simultaneous
Krieg Tic-tac-toe.

Rules are conditionally applied to states. For every match
it allows a transition from a source state to another state.
When the source state is the same as the target state, the
rule is called a ’graph condition’. Rules which change the
graph of a state are called transformers. An example of
the transformer ”move” is given in figure 3. Groove makes
use of colours to model how nodes, edges and labels are
affected by a rule. Nodes, edges and labels coloured black
are required to be present in the graph in order for the
rule to apply. The opposite true for the colour red. The
colour blue is similar to black, however, when the rule is
applied, everything coloured blue will be deleted. Green
is used to create nodes, edges and labels when the rule
is applied. If a rule can be applied in multiple ways and
result in multiple unique states, multiple transitions will
be created. In the start graph in figure 2, the rule ”move”
can be applied three times. In figure 1 the three transitions
created by applying the rule to the start graph can be seen.

Groove allows for finer control of rules using Control. It
can define the order in which rules should be applied, if
rules can be repeated and combine rules into composite
rules. The composite rules can occur either as recipes or
functions. Where recipes require all steps to be applied
successfully, functions can apply steps until the function
is completed or one of the steps fails. A fragment of an
example control program is shown in figure 4. Groove sup-
ports a wide range of Control syntax, but a small section
will be highlighted. To call a rule, the name of the rule can
be used. To try a rule the ”try” syntax can be used. If the
rule cannot be applied in any way, the optional else block
is executed. The ”any”command allows for the application
of any rule inside of a directory. To repeat a command or
block of commands as long as possible, ”alap” can be used.

GrooveChannel is a an extension for Groove allowing ex-
ternal programs to communicate with Groove through an
API [1]. When a client connects, it is first required to send
a gps file containing the Groove grammar. This file must
be zipped and encoded in base64. After this has been suc-
cessfully done, the ”state”, ”info”, ”rules” and ”exit” com-
mands become available. The ”rules” command returns
a JSON representation of all rules in the grammar. The
”state” command takes a state number as an argument
and returns the state graph with the corresponding state
number. The state graph is encoded in JSON format and
is described by nodes and edges. Similar to the ”state”
command, the ”info” command also uses the state num-
ber as an argument but returns the possible transitions
instead. These transitions contain a source state number,
name and target state number. For both commands the
state number argument is restricted to state 0 or states
already discovered by the info command. For example,
sending ”state 2” is only allowed if a previous info com-
mand contained a transition to state 2. It is important
to note that states numbers are dynamically assigned on
a connection basis for the states are numbered in order
of discovery. This means that the previous state numbers
are lost when a new connection is made.

3. APPROACH
To show that Groove can be used for General Game Play-
ing with and without perfect information we will demon-
strate that Groove grammars can be used for managing
general games and playing general games. To manage
games with perfect information described in Groove gram-
mars, we first investigate constraints to capturing these
games in Groove grammars. These grammars ensure that
the match-manager understands the state of the game and
can determine what moves are allowed for the players.
To demonstrate that perfect information games adhering
to these constraints are manageable, we will model and
play Connect Four. The constraints for the grammars
will be extended to allow for the managing of games with
imperfect information. Managing imperfect information
games will be shown by modelling and playing Simultane-
ous Krieg Tic-tac-toe.

For both perfect and imperfect information games, three
players will be created. A legal player and a random player
will serve as naive players. An additional player will be
implemented that can use Groove to perform better than
the naive players. These players will be designed as a
general game players, and it strategy will not be based
upon knowledge of the game.

The games will be validated using their respective play-
ers. All players will play one another as both the start-
ing player and the second player. Every match-up will
play 1000 games. If the last player is able to significantly
play better than the random player it demonstrates that
Groove can be used for playing general games.

4. GENERAL GAME PLAYING WITH PER-
FECT INFORMATION

4.1 Managing games
To be able to understand the states of a game, its mod-
elling is subject to a few requirements. Each node with
type ”Player” is a player slot. In order to determine which
player is to move in each state, the slot of the current
player has a flag ”turn”. Only one turn flag is allowed and
at each non final state, one player needs to have the turn
flag. To determine the winner of the game the win flag
is used. This flag is only allowed in a final state and is
not required to be present. It is also possible for multiple
players to have the win flag.

Transitions are used to represent moves. All transitions
in a state are legal moves the current player can make.
Final states are not allowed to have transitions to other
states. These requirements ensure that the state space
of the grammar represents the state space of the game.
Every state is a legal state, and every transition is a legal
move in the game.

The match-manager is responsible for managing a single
match. It is initialised using a gps base64 string and a
list of players. A connection is made with Groove using
GrooveChannel and the initial state of the game is ex-
plored. The player slots are identified and matched to the
list of players. All players are then initialised and receive
their player identifier and the shared connection object to
Groove. Afterwards the match-manager starts the match
and requests moves from the player as described by the
GPS.

4.2 Modelling the players
To model general game players for perfect information
games, we will first need to discuss how the player knows
about its position in the game. Because all information

3



about the state of the match is available to all players, the
players can be allowed to reason with the connection of
the match-manager. The match-manager requests a move
from the player in a certain state number. The player can
retrieve information about the state or the legal moves
using the state number for as long as the connection is
shared.

The Legal Player uses the connection to retrieve all pos-
sible moves in the current state. The first legal move is
picked. It should be noted that the order in which Groove
presents the move is not always the same in all states;
What column is chosen for the first move Groove returns
dependence on the state. However, the ordering of the
moves is not random and does not differ between multi-
ple matches for the same game. For a game with perfect
information we expect the legal player to always get the
same result against itself, for every time the same path
will be taken along the game tree.

The Random Player also uses a connection to retrieve the
possible moves for the current state. When a move is
requested by the match-manager a random move is picked
from all possible moves with a uniform distribution.

The Lookahead player is a very simple improvement upon
the Random Player. Whenever a move is requested, it
evaluates the game tree with a depth of two moves. If
there exist a move in the current state that would allow
the Lookahead player to instantly win, that move is picked
immediately. If no such move exists, it will look if any
move could allow another player to instantly win. It will
disregard all these moves and pick a random move from
the remaining if possible. If a forced win by the opponent
cannot be avoided, it will pick a random move from the
legal moves.

4.3 Modelling Connect Four
As perfect information game Connect Four2 was chosen.
This is a game for two players where each player makes a
move after the other. All players have the same informa-
tion and can see the moves of the opponent. The board
consists of seven columns and six rows. The player who
has the current turn chooses one of seven columns and
drops a piece with his or her colour. The pieces stack
and a column cannot be chosen once it contains six pieces.
When all columns are full the game is a draw. A player
wins if 4 pieces of his or her colour are connected either
horizontally, vertically, or diagonally consecutively.

There are two player slots and one of the has the turn. The
graph for a board with 4 columns and 3 rows is shown
in figure 5. The actual board with six rows and seven
columns is modelled using a similar fashion.

The flow of Connect Four can be described using a few
steps.

1. The player whose turn it is drops a fiche in one of
the available columns.

2. The board is checked for a winning position. The
player with the winning position is marked as the
winner.

3. If no winning position has been found, the next player
will receive the turn.

All these steps can be modelled using one or more rules.

The move step (step 1) is modelled in the rule called move,
see figure 6. The rule requires a player node with a turn
2https://en.wikipedia.org/wiki/Connect_Four

Figure 5. Starting position of Connect Four for 4x3 board.

Figure 6. The move rule of Connect Four.

flag and a field node with a lowest flag connected to an-
other node using a up edge. The player loses his turn by
taking a field and instead is flagged using the ”pass” flag.
The field loses his lowest flag and passes it to the node
above.

The win step (step 2) is modelled using four separate rules.
One rule for a horizontal connection, one rule for a verti-
cal connection and two rules for the diagonal connections.
The horizontal win rule requires four fields directly con-
nected using right edges and a player with the pass flag,
see figure 7. If this has been found the player loses its
pass flag and receives a win flag. The other rules are con-
structed in a similar fashion.

The final step (step 3) is responsible for passing the turn
of the player, see figure 8. The player loses its pass flag
and the player connected with a next edge gains the turn.
The turn can only be passed if the next player has a legal
move. This is the case if there exists a field that is flagged
as lowest.

To make sure that the move rule can be applied to the last

Figure 7. The horizontal win rule of Connect Four.

4

https://en.wikipedia.org/wiki/Connect_Four


Figure 8. The pass turn rule of Connect Four.

Figure 9. The control of Connect Four containing the
play move recipe.

row, a row of empty nodes is connected, as can be seen in
figure 5. Once all fields of a column are taken, the move
rule cannot be applied to that column.

Because the game-manager sees every transition as a move,
the three steps have to be combined. We want a unique
transition for every possible way the move rule can be
applied. We therfore make use of Grooves control func-
tionality. This control defines a recipe called ”play move”,
see figure 9. This recipe starts with calling the move rule,
which means that a play move transition is created for ev-
ery transition that the move rule would have. It is possible
that a move can result in a position where two winning
conditions are met. To ensure these rules do not cause
additional transitions we group the winning rules using
the ”any” syntax. Every state should be checked for the
winning conditions, but they are not required to succeed.
The ”try” keyword let us try to apply a condition. If the
game has not been won, the pass turn rule is tried.

5. GENERAL GAME PLAYING WITH IM-
PERFECT INFORMATION

5.1 Adjustments to games
To allow for games with imperfect information, a few ad-
justments have to be made to the GPS. First, the asym-
metry of information has to be modelled. The match-
manager always has all information, but the information
the players have can be limited. For perfect information
games the connection to Groove could be shared, how-
ever, for imperfect information games this would give the
players too much information. Instead of initialising the
players with the shared connection to Groove, the players
receive the GPS string. This requires them to use an own
reasoner to allow them to reason with the current state.

As previously discussed in section 2.1, Groove will number
states based on discovery. This means that two players
who reason about the game can have different numbers
for the same state. The transitions cannot be used any-
more to communicate moves between players. To solve
this, GrooveChannel was slightly modified. In addition to
giving the source, rule name and target it also gives the
anchors of a rule. Anchors are used in Groove to iden-
tify what nodes and edges are affected by a rule. Because
recipes do not have recipes, it is possible to use an argu-
ment instead.

When a player is to move, the match-manager notifies the
player. The player receives a filtered version of the cur-
rent state. The filter is a special transition that removes
all information from the state which should be hidden for
the player. Exactly one filter transition is required in ev-
ery state where a player has the turn. In both the orig-

Figure 10. An original state and a filtered state in an im-
perfect information game.

inal state and the filtered state, the non-filter transitions
should be equivalent. An example is given in figure 10.
Every transition that is present in State s0 is also present
in State s1, apart from the filter.

To introduce chance in the game, the possibility of moves
by nature is introduced. This is not required by all imper-
fect information games. Krieg Tic-tac-toe, for instance,
does not have moves by nature. However, many imperfect
information games do have some form of random chance,
this includes simultaneous Krieg Tic-tac-toe. Instead of a
player node, a node with type random receives the turn.
This will be recognized by the match-manager and it will
choose a single transition out of all possible transitions
using a uniform probability.

5.2 Modelling Simultaneous Krieg Tic-tac-
toe

Game chosen as test for playing imperfect games is Simul-
taneous Krieg Tic-tac-toe. This game is a variant of Krieg
Tic-tac-toe where the requirement of simultaneous moves
is added. Krieg Tic-tac-toe is a widely used example of
a game with imperfect information. It differs from tradi-
tional Tic-tac-toe3 by restricting the observable pieces to
the respective owner. If a player chooses a slot occupied
by the opponent, the piece is discovered and the player is
allowed to try another slot.

The Simultaneous variant of Krieg Tic-tac-toe requires the
players to requires the players to choose a slot at the same
time. If both players choose the same slot, a coin flip de-
cides who gets control over the slot. The other player will
learn that the other player controls the slot. If different
slots are chosen, a player will either control the slot if not
already controlled by its opponent or receive the informa-
tion that the slot is already taken. Slots that have been
chosen in the past cannot be chosen in subsequent rounds
by the player. A player wins if it controls 3 adjacent slots
horizontally, vertically or diagonally. When both players
win in the same round or they are both out of moves the
game is a draw.

3https://en.wikipedia.org/wiki/Tic-tac-toe

5

https://en.wikipedia.org/wiki/Tic-tac-toe


Figure 11. The starting state of Simultaneous Krieg Tic-
tac-toe.

Figure 12. The rule that allows player 1 to choose a field.

Just as with Connect Four, the game has a rectangular
board with connected fields, see figure 11. Two player
nodes, as well as a random node is created. The players
are identified using an id. The first player receives the
turn.

Although the game is played simultaneously, the GPS is
modelled consecutively. This means that one of the players
chooses its move before the other. For the players this does
not matter, since the opponents choice can be filtered from
the state they receive. The rules used for modelling the
player moves are separated. Choose1 allows player 1 to
choose a field and pass the turn to player 2, see figure 12.
Choose2 has the same functionality but passes the turn to
random instead.

The move by nature is modelled using control and consists
of three steps.

1. Remove the turn flag from the random player.

2. Either allow or deny each player to take the field
they chose.

3. Check if the game is won or drawn or give the turn
to the first player again.

These three steps are combined in four separate recipes:
deny both, take first, take second and take both. The
choice was made to distinguish these recipes, to allow the
moves to be recognized by name alone. The first and last
step are similar to the win rule and pass turn rule of Con-
nect Four.

To allow a player to take a field, the rules take and take arg
are used. The graph of rule take arg is shown in figure

Figure 13. The take rule of Simultaneous Krieg Tic-tac-toe.

Figure 14. The filter rule of Simultaneous Krieg Tic-tac-
toe.

13. The rule takes as argument an integer. This integer
must be the same as the id of the player. If the field is
unoccupied, a piece will be linked to the field which is
owned and seen by the player. The normal take rule does
not take the id of the player and can therefore match any
of the player nodes.

The deny rule used is like the take rule. The difference is
that a piece already has to exist for the field. Additionally,
after application of the rule, the player will not own, but
only see the piece.

To allow for filtering of the states a single filter rule has
been made, see figure 14. For the player that has the turn,
all piece nodes that are not seen are removed and all choose
edges from the other player. The choice for separating the
field node and the piece node was made to allow for easy
filtering.

5.3 Adjustments to players
The change from perfect to imperfect information games
has no effect on the workings of the Legal player and Ran-
dom player. Their decision-making only relies on the avail-
able moves in the actual state. Because filtering the actual
state does not affect the available moves, the moves that
are available in the filtered state represent all the moves
in the actual state.

This, however, is not sufficient for our Lookahead player.
Although it knows what moves are possible in its current
state, it is not sure if that move will result in a win. Going
one step further, it knows even less about the legal moves
that could allow the opponent to win in his next turn.

It is possible to reason about the actual state of the game.
The filtered state only removes nodes and edges, meaning
that all nodes and edges present in the filtered state, are

Figure 15. The state of a possible match as seen by the
match-manager.

6



Figure 16. The same state in figure 15, filtered for the
second player.

Table 1. Simulation of 1000 matches of Connect Four either
resulting in a win for player 1, a draw or win for player 2.

vs. Legal 2 Random 2 Lookahead 2

Legal 1 0/1000/0 413/0/587 175/1/824
Random 1 666/2/332 563/3/434 288/0/712

Lookahead 1 865/0/135 842/0/158 594/0/406

also present in the actual state. This can be demonstrated
with the following example in Simultaneous Krieg Tic-tac-
toe. The two players have chosen the same field in the first
turn. Afterwards, the first player chooses a second field.
It is now up to the second player to make a move. A slice
of the current state is shown in figure 15. The second
player, however, will perceive the state as shown in figure
16. After a single round and a choice by the first player,
the game could be in (8∗9 + 18)∗8 = 720 different states.
But by reasoning, this number can be reduced to only 8.
The player knows what moves he has played in the past.
Given that seeing but not owning a piece after its first
move requires that both players chose the same field, the
number of possible states is reduced to every move the
first player could have made.

This kind of reasoning about possible states can also be
implemented for a look ahead player that uses Groove.
When it receives the gps file, it can find all states in which
he would receive its first turn. When he receives his turn
by the match-manager, it will compare all of these states
with the filtered state. Because the filtered state is a sub-
graph of the original state, it can eliminate any state for
which this does not hold. Finally, it will choose a move
based on all remaining states and calculate all descending
states of the remaining states in which it is to move.

This is not a scalable approach to a general game player,
however because Simultaneous Krieg Tic-tac-toe is not a
very complex game, we expect reasonable performance.

6. VALIDATION
6.1 Connect four
For each combination of computer players 1000 matches
of Connect Four were played. All of these games ended
in one of three possible outcomes. The outcome of these
matches are in table 1. The number after the player type
denotes whether the player was first to play, or second
to play. The total win percentage of all players for all
positions are shown in table 2.

Table 2. Win percentages of all players for the 1000 matches
simulated.

as player 1 as player 2 combined

Legal 19.60% 15.57% 17.58%
Random 50.57% 39.30% 44.93%

Lookahead 76.70% 64.73% 70.72%

Table 3. Outcomes for the starting player in Connect Four.
n win loss draw

Groove 1e3 56.3% 43.4% 0.3%
Cato 1e8 55.58% 44.17% 0.26%

Table 4. Simulation of 1000 matches of Simultaneous Krieg
Tic-tac-toe either resulting in a win for player 1, a draw or
win for player 2.

vs. Legal 2 Random 2

Legal 1 448/72/480 425/107/468
Random 1 472/121/407 478/112/410

According to a sample of 1000 games, the chance of win-
ning Connect Four is 56.3% when starting or 43.4% when
playing second. Additionally, 0.3% of the games were a
draw. Although no publication were found mentioning
win or draw percentages of Connect Four, the draw per-
centage was discussed on the Mathematics StackExchange
site [10]. A program provided by the user Cato could be
used to find this draw percentage, as well as the winning
percentages, for random play-outs4. This program was
ran to simulate one-hundred million matches. The results
are shown in table 3, alongside the results of the random
player in Groove. The winning percentage of both Groove
and Cato are compared. Because the number of samples
of Cato’s program is extremely large, those numbers are
taken as the actual chances. The Z-score was calculated
using with p̂ = .5558, p̂1 = .563 and n1 = 1000:

Z =
p̂1 − p̂√

p̂(1− p̂)/n1

= .458 (1)

This gives a p-value of 0.6447.

To compare random play with informed play, we need to
determine for which winning chance is considered signif-
icantly higher or lower than the chance of winning ran-
domly. The 99% confidence interval of the chance to win
as a starting random player can be calculated as follows:

p+−2.33 ·
√
p(1− p)

n
=

0.5558 +−2.33 ·
√

0.5558(1− 0.5558)

1000
=

[0.5153, 0.5963]

For playing second, the 99% confidence interval of the win-
percentage is:

p+−2.33 ·
√
p(1− p)

n
=

0.4417 +−2.33 ·
√

0.4417(1− 0.4417)

1000
=

[0.4013, 0.4821]

The win percentage of the Lookahead player is 84.2% and
71.2% for playing first and second respectively.

6.2 Simultaneous Krieg Tic-tac-toe
The results for the matches of Simultaneous Krieg Tic-
tac-toe are shown in table 4. The Lookahead player was
omitted from this table, because it was unable to reason
with the game.

Whenever the random player plays itself, the starting ran-
dom player won more games. Out of 888 games won by

4https://dotnetfiddle.net/5Ja1JS

7

https://dotnetfiddle.net/5Ja1JS


Figure 17. Two equivalent states received by different con-
nections to Groove.

Table 5. Results of 150 matches for the Lookahead player
against the random player.

win draw loss

39 31 80

either player, the player that was allowed first to move won
472/888 = 53.15% of the games. Simultaneous Krieg Tic-
tact-toe is a game which should be played simultaneous,
but is modelled consecutively. A significant advantage for
one of the player could mean a faulty implementation. We
define our Null hypothesis as H0; p = .5 and our alterna-
tive hypothesis as H1; p 6= 0.5.

µ = p0 · n = 444

σ =
√
n · p0 · (1− p0) = 14.90

P (Z >
471.5− µ

σ
) = 3.21%

Because 3.21% > 2.5%, we are not able to reject the null
hypothesis with a 95% certainty.

The Lookahead player was not able to reason with the im-
plemented version of Simultaneous Krieg Tic-tac-toe. The
issue was avoided by creating an adjusted version. The
Lookahead player played 150 matches against the Random
player of which the results are given in table 5.

Although reasonable performance was expected given the
simplicity of the game, the Lookahead player was signif-
icantly slower than both the Legal and Random player.
Playing 150 matches between two random players took
24 seconds, whereas playing the 150 games shown in 5
took 1764 seconds. An example of the number of states
the Lookahead player considered is given in 6. For every
move, ”before” depicts the number of possible states the
player could currently be in and ”after”depicts the number
of possible states the player could be in for the next turn.
The difference between the number of states between move
1 after and move 2 before is caused by the application of
the reasoning.

7. RELATED WORK

Table 6. Example of possible states considered before and
after moving.

move before after
1 9 80
2 72 560
3 112 684
4 516 2120
5 790 2688
6 392 924

General Game Playing in Groove is also being researched
by Daniel Floor [4]. However, his focus is on the modelling
of complex games and researching the understandably of
the games for humans.

GDL is one of the most common Game Description Lan-
guage. Although, published in 2006 by Love et al. as
a language for perfect information games only[9]. It was
extended multiple times. First in 2011, to allow for imper-
fect games [15], and later in 2017, to allow for epistemic
reasoning [16]. Although its use is widespread, other al-
ternatives have also been developed.

Ludii is another Game Description Language and reasoner.
It is developed as part of the Digital Ludeme Project which
has the goal to ”model the world’s traditional strategy
games in a single, playable digital database.”. Ludii is
designed as the language which will be used to model the
games. The tool is designed with both efficiency and read-
ability in mind. Like our system, the language allows for
both expressing perfect and imperfect information games.
However, instead of graphs it uses text to model the games.
The syntax is more concise than GDL [11]. They conclude
that Ludii outperforms GDL and is competitive with RGB
in terms of reasoning efficiency.

8. DISCUSSION
The results of Connect Four are as expected. The match-
manager was able to manage the game without errors. All
1000 matches where the legal player played itself, were
a draw. Because the moves of the Legal player should
be predetermined, the outcome of a single match should
always be the same. Additionally, the win percentages of
the random player did not significantly differentiate from
the win percentages given by the external program of Cato.
All these findings suggest correct modelling of the game
and implementation of the match-manager.

The general game player for the perfect information game
also performed well. The win percentage of the Looka-
head player was well above the 99% confidence interval
of random win chance when starting. For playing second,
the win percentage also was above the confidence interval.
This means that the Lookahead player performed signifi-
cantly better than the random player, from both positions.
Informed decision-making using groove, without prerequi-
site knowledge of the game, has been shown.

For the imperfect information game Simultaneous Krieg
Tic-tac-toe, the results are indefinite. To start, the legal
player performed as expected. Because this game incorpo-
rates moves by nature whenever a Field is chosen by both
players, the game is not predetermined when the same
moves are chosen. This is different from perfect infor-
mation games, like Connect Four. The results in table 4
reflect this behaviour.

The outcome of the matches between two random players
are expected to be equal. The real game has no starting
player, however the model in Groove has. The model is
designed so that the turn of the either player should not be
affected by one another in a single round. Any advantages
for either player would suggest that this design has failed.
Although the null hypothesis of equality of chances was
not rejected, it has not been shown it was correct. The
correctness of the model should be further investigated.

Creating asymmetry in information using filter transition
used by the match-manager is not optimal. The filter of-
fers the creator of a game grammar fine control over the

8



Figure 18. The adjusted graph for the choose rule.

Figure 19. The adjusted graph for the take rule.

graph that the players are allowed to see, however it dis-
torts the state space. Whereas the game tree of perfect
information games is represented by the state space of the
grammar, for imperfect information games the filter intro-
duces states which are not legal for the game. An alterna-
tive could be edges from the player nodes to the observable
nodes in a graph. The match-manager would contain an
algorithm for eliminating the nodes not observed by the
current player. Another option would be to extent Groove
with additional syntax. Nodes and edges not containing a
certain keyword and player id, could be filtered from the
graph when presented to the player.

The reason why the Lookahead player could not reason
with the states was investigated and found late in the re-
search process. The issue was caused by the method used
for comparing graphs. The numbering of the nodes was
assumed to stay consistent, however, this was not the case.
In figure 17 it is demonstrated that the nodes in a graphs
of an equivalent state are not guaranteed to be numbered
the same. This is only true for nodes that are created
by the application of rules. This means that models con-
taining rules that create nodes cannot be played using the
Lookahead player. A possibility would be to use graph
isomorphism theory to test the filtered state with possi-
ble states. However, this is likely to provide a significant
penalty in performance. Constraining the models even fur-
ther, by requiring all rules to not create new nodes, would
weaken the ability to model general games in Groove. The
Lookahead player therefore is not a general game player.

Simultaneous Krieg Tic-tac-toe was adjusted by changing
all rules that created or checked for the existence of the
Field node and starting the game with all piece nodes al-
ready attached to their respective field. Figure 18 shows
the new choose rule and figure 19 shows the new take rule.

Although the Lookahead player was able to play the game,
it performed significantly worse than the random player.
This suggests that the strategy was either not well de-

signed or not well implemented. The reasoning part of
the Lookahead player was successfully able to explore the
adjusted game. A better strategy or implementation, to-
gether with a better approach to selecting states to reason
with, should allow for a more accurate and faster general
game player.

The connection of proved General Game Playing algo-
rithms to the match-manager could further demonstrate
the possibility of General Game Playing with Groove gram-
mars. For perfect information games, the algorithms of
players like CadiaPlayer could be adapted into Groove
players. Additional games could also be made.

In addition, Groove could also be used for more game the-
ory exploration. The state graph created by the grammars
described in this paper, are very similar to extensive form.
These could be used to exploring equilibria for different
configuration of rules or starting states.

All code and models are available on the UTwente Stu-
denten Net GitLab5

9. CONCLUSIONS
This paper demonstrates the possibility of using Groove
for General Game Playing. Connect Four and Simulta-
neous Krieg Tic-tac-toe were used as an example for a
perfect and imperfect information game respectively. The
perfect information game was shown to be successfully im-
plemented and was playable for both naive players and
a simple General Game Playing strategy. Simultaneous
Krieg Tic-tact-toe was modeled, but it could not be shown
that it was implemented correctly. The proposed general
game player was unsuccessful in playing imperfect infor-
mation games better than a random player.

An answer to RQ 1 was found. To be able to use a Groove
grammar as model for a game with perfect information:
each state needs to flag a player with having the turn;
each transition from a state needs to correspond with a
legal move in that state; and the winner of a game is des-
ignated with a flag in a final state. These grammars can
be managed by a match-manager, who determine which
player is to move or or has won using a connection with
Groove. The match-manager shares the connection with
the general game player which applies its strategy to this
model of the game.

To answer RQ 2, this paper proposed additional require-
ments of the Groove grammars. An additional transi-
tion using a move called ”filter” has to be present each
time a player receives the turn. This transitions a source
state into a target state that limits the information for
the player. The filtered state has to be a sub-state of
the original state and all transitions, apart from the filter
transition, need to have an equivalent in the filtered state.
The grammars are also allowed to create moves by nature.
When the player with type random has the turn, a ran-
dom move transition will be taken by the match-manager.
Although an option for modelling simultaneous moves has
been discussed, it has not been shown correct.

RQ 3 has only been partially answered. Imperfect infor-
mation requires the match-manager to not share its con-
nection with Groove. This change requires the transitions
to be uniquely identifiable and makes comparison of states
more difficult. Transitions can be made unique by the
inclusion of anchors. To allow for comparison of states,
the rules of grammars can be restricted to not create new
nodes. However, this could hurt the generality of the sys-

5https://git.snt.utwente.nl/s1916661/strategies

9

https://git.snt.utwente.nl/s1916661/strategies


tem. A general game player was able to reason with the
filtered information about the state of an imperfect infor-
mation game, but it performed worse than a random move
generator.

10. ACKNOWLEDGEMENTS
This paper would not have been possible without the feed-
back, motivation and guidance of my supervisor, Arend
Rensink. His experience, as researcher and as teachers,
helped me to perform when it was needed. I would also
like to thank Daniel Floor for the encouraging words and
the help in understanding Groove. Last, but not least,
I would like to thank Dennis Aanstoot for providing me
with his GrooveChannel tool as well as a manual for how
to use it.

11. REFERENCES
[1] D. Aanstoot. Graph Rewriters as Components.

Master’s thesis, University of Twente, 2021.
(unpublished).

[2] CCRL Blitz, 2021. https://computerchess.org.
uk/ccrl/404/rating_list_all.html, visited on
2021-06-25.

[3] H. Finnsson and Y. Björnsson. Simulation-based
approach to general game playing. Proceedings of the
National Conference on Artificial Intelligence,
1:259–264, 2008.

[4] D. Floor. Using Groove as a General Game Playing
Environment. Master’s thesis, University of Twente,
2021. (unpublished).

[5] M. Genesereth and M. Thielscher. General game
playing. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 24:1–231, 2014.

[6] A. H. Ghamarian, M. de Mol, A. Rensink, and
E. Zambon. Saying Hello World with GROOVE - A
Solution to the TTC 2011 Instructive Case.
Electronic Proceedings in Theoretical Computer
Science, 74:215–222, nov 2011.

[7] FIDE Top 100 Blitz Players, 2021. https:
//ratings.fide.com/top.phtml?list=men_blitz,
visited on 2021-06-25.

[8] F. Koriche, S. Lagrue, É. Piette, and S. Tabary.
General game playing with stochastic CSP.
Constraints, 21(1):95–114, 2016.

[9] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and
M. Genesereth. General Game Playing: Game
Description Language Specification, 2006.

[10] What’s the probability a random game of Connect 4
ends in a draw?, 2020. https:
//math.stackexchange.com/questions/3569997/

whats-the-probability-a-random-game-of-connect-4-ends-in-a-draw,
visited on 2021-06-25.

[11] É. Piette, D. J. Soemers, M. Stephenson, C. F.
Sironi, M. H. Winands, and C. Browne. Ludii - the
ludemic general game system. In Frontiers in
Artificial Intelligence and Applications, volume 325,
pages 411–418, 2020.

[12] A. Rensink. The GROOVE simulator: A tool for
state space generation. In J. L. Pfaltz, M. Nagl, and
B. Böhlen, editors, Lecture Notes in Computer
Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 3062, pages 479–485,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[13] M. Schofield and M. Thielscher. General game
playing with imperfect information. Journal of
Artificial Intelligence Research, 66:901–935, 2019.

[14] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

[15] M. Thielscher. GDL-II. KI - Kunstliche Intelligenz,
25(1):63–66, 2011.

[16] M. Thielscher. GDL-III: A description language for
epistemic general game playing. IJCAI International
Joint Conference on Artificial Intelligence,
0:1276–1282, 2017.

10

https://computerchess.org.uk/ccrl/404/rating_list_all.html
https://computerchess.org.uk/ccrl/404/rating_list_all.html
https://ratings.fide.com/top.phtml?list=men_blitz
https://ratings.fide.com/top.phtml?list=men_blitz
https://math.stackexchange.com/questions/3569997/whats-the-probability-a-random-game-of-connect-4-ends-in-a-draw
https://math.stackexchange.com/questions/3569997/whats-the-probability-a-random-game-of-connect-4-ends-in-a-draw
https://math.stackexchange.com/questions/3569997/whats-the-probability-a-random-game-of-connect-4-ends-in-a-draw

	Introduction
	Background
	Groove

	Approach
	General Game Playing with perfect information
	Managing games
	Modelling the players
	Modelling Connect Four

	General Game Playing with imperfect information
	Adjustments to games
	Modelling Simultaneous Krieg Tic-tac-toe
	Adjustments to players

	Validation
	Connect four
	Simultaneous Krieg Tic-tac-toe

	Related Work
	Discussion
	Conclusions
	Acknowledgements
	References

