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1 Abstract

This research implements one modified version of the classical union find (UF) data struc-
ture - called Reconstruct with Weighted Quick Union and Path Compression (RWQUPC),
which applies to Ludii game general system for connection games. The classical UF is an
efficient data structure to solve dynamic connectivity problems. The classical UF contains
5 operations: makeset, union, find, connect, and count. However, this data structure has
no efficient deletion operation. In this research, we design a framework with UF, which
can support a deletion operation (it is called union find deletion (UFD)). As a result,
the proposed framework helps to increase the applicability in different connection games.
During the study period, we have designed 9 different ludemes (i.e.,game mechanisms
defined by Java classes) by using UF, which we can directly use for game modeling in the
Ludii game general system [PSS+19].

Some studies show that UF is already applied in some 2-player connection games, such
as Hex, Go, etc. In our research, we have tried to increase the generability of the UF in
different aspects of connection games, such as different game rules, various game board
shapes and sizes, different numbers of players, different connectivity, and so on. This
study is a small example of general game design to use a common framework. Moreover,
to design a connection game with classical UF, players cannot access the undo button in
the graphical user interface (UI). In our study, we also solve the problem of designing UI
with the deletion operation.

Presently, UF and UFD frameworks are using in the Ludii game general system with 15
connection games. We analysed both frameworks in Ludii, where we found the RWQUPC
has equal or better performance than the existing brute force methods for two games (Line
of Action and Hex). We explain all the tests in the Experimental sections. All the code
and test data are provided in the appendix section.

2 Introduction

A connection game is a board game in which players vie to develop or complete a specific
type of connection with their pieces [Bro05]. The connection is a valuable property to
play a connection game. Two popular connection games can be shown in figure-1. There
are different types of game boards used in connection games, where 2 or more players can
be involved. For example, in some 2-player games (for example, Hex, Y, Havannah), a
player needs to connect different regions in the different types and shapes of the game
board. Similarly, the aims of some other connection games (such as Line of Action, and
Groups) to create a single group.

UF is an efficient and well known dynamic data structure, which has been successfully
used in different types of applications, such as Network connectivity, Kruskal’s minimum
spanning tree algorithm, Percolation, and so on. Notably, there are various forms of the
classical UF Algorithms, which are Quick Find (QF), Quick Union (QU), Ranked Quick
Union (RQU), and Weighted Quick Union (WQU) [SW11][CLRS09]. The union operation
is very convenient to create a set for some disjoint items. Besides, find operation is used to
determine the specific set name of any particular item. The runtime of the data structure
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is O(n+mlog(n)), where n is the total items, and m is the total number of find operation
using. The UF helps to speed up to create a connection in connection games, which is
used in some 2-player connection games, such as Hex, Y [BT12], and Havannah [Ewa12].

As mentioned before, deletion operation is absent within the original data structure
of UF. However, in the literature of general graph theory, some proposed algorithms
discussed to modify the classical UF data structure, so that the deletion operation can
be applicable. However, all the modified data structure of UF with deletion operation
is not efficient same as the classical UF [KST02, ATG+05, BY11]. Moreover, those are
not suitable to apply in connection games. Because the connectivity of each game stone
depends on its adjacent cell’s game stone. For example, a game stone v can be connected
with other game stone w, if and only if v and w are in the adjacent cells, or they have
another connected path between them. In this research, we aim to analyze and design a
general way to use union find deletion for connections game environment. Notably, we are
interested in designing a system that can support the different number of players, various
categories of game boards (i.e., types, sizes, and different cells), and different connectivity
(such as orthogonal, all direction, etc.). As a result, a single framework can integrate
more connection games in it.

(a) Hex.

(b) Go.

Figure 1: Two popular connection games.

2.1 Research Questions

To consider our research goals, we summarized the following research questions:

1. Can we practically use the union find deletion data structure for connection games?

2. In which conditions union find deletion operation is applicable?

3. How efficient is it to use union find deletion method in comparison with the classical
union find data structure?
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3 Related Work

The UF data structure was proposed by Bernard A. Galler and Michael J. Fischer in
1964 [GF64]. In 1973, the time complexity of UF was bounded to O(logn)1 by Hopcroft
and Ullman. Robert Tarjan proved the upper bound complexity of this algorithm is
O(α(n)) (where α ≤ 4) by using the inverse Ackermann’s function in 1975 [CLRS09]. As
mentioned before, the classical UF algorithms are divided into several types according
to their performance. The first category is the Quick Find (QF) algorithm, where the
runtime for the union is O(n) and find is O(1). The second variation is the Quick Union,
the run time for the union and find operation is O(treeheight) . The third one is the
Weighted Quick Union (WQU) has performed both operations in O(logn). The last one
is the Ranked Quick Union (RQU), which has also provided the same performance as
the WQU. However, the WQU and the RQU can be used with a heuristics- called Path
Compression. In this case, the union and the find operation take very nearly 1 in the
amortized analysis [SW11].

In 2002, Tarjan et al. have proposed several different variations of the union find
deletion data structures. These are union find with deletions via k-ary trees, union find
with deletions using incremental copying, and union find via path compression and linking
by rank or size [KST02]. Besides, all the variations, there includes a new operation
called insert, which is able to add a global item into the data structure. In the first
proposed variation (i.e., union find with deletions via k-ary trees) can be able to perform
the deletion operation at O(logn/logk), where the number of children of the root or the
intermediate nodes at least k in a union tree. The next algorithm is union find with
deletions with incremental copying, where the worst-case performance of the deletion(x)
operation depends on the summation of find and insert operation. The last modification
of the union find deletion data structure is called rebuilding method, where the amortized
cost for each delete is O(N), where N is the total number of items in the set, which
contains the deleted item and N ≤ n. In this research, the proposed method is based on
this category, where we have used reconstruct topology instead of the rebuilding. In the
method section, we describe more explanations about the reconstruct methods.

Alstrup et al. have demonstrated a constant time delete 2 operation of the union find
delete data structures in 2005 [ATG+05]. However, in the worst case, the data structure
contains twice more space than the actual items in the union tree. As a result, the size of
the data structure does not implies the actual items in it, and the find operation takes a
longer time than it is necessary. Amir and Simon have suggested another data structure
with the constant time delete operation in 2010 [BY11].

In 2012, Browne et al. applied that the UF and the Weighted Quick Having Union
Find (WQHUF) for the Hex and Y and also showed that both algorithms well perform
in the Per-Move win test than other methods [BT12]. In the same year, Ewalds designed
Havannah with the UF, where he used UF not only to detect a specific number of con-
nections between the edges and the corners (as per the rules of the game Havannah) but
also to recognize a pattern, which is a ring [Ewa12]. Notably, in all of those cases, the

1n is the total number of items.
2In this publication, authors used name delete instead of deletion.
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deletion operation is not necessary.
In this study, we have focused on increasing the application areas of the UF with the

deletion operation in connection games. Because all the proposed data structures with
deletion operation designed to use in the general graph. In all the cases, after executing
the deletion operation to delete one item from a union tree, then the number of items
in that set is reduced by one. However, the union tree is not split into more subtrees
[KST02, ATG+05, BY11]. This means if we want to execute deletion to delete any item
from a union tree T with N items (where, N ≥ 1). After deletion executing, the size
of T will be N − 1. However, the number of union trees in the universe remains the
same. In connection games, if we delete an item from its existing tree, then it could
happen the union tree divides into several union trees (which is proven in the theorem-
2). To solve this problem, we introduce the reconstruct method, which helps to make
overall implementation more efficient for general cases of connection games. We have
tested the performance of the proposed data structure in a total of 15 connection games.
All the tests takes 40 seconds of random playout per second (i.e., p/s) and moves per
second (i.e., m/s) and in total, 20 times for each test runs in each game with a specific
condition. The experimental result implies that the union find delete data structure is
efficient enough to replace the classical UF data structure in connection games. As far
as our knowledge, no research has been done to make union find deletion in the general
application of connection games.

4 Applications

In this research, we have found four different specific cases in connection games to apply
this union find deletion data structure. In the following, we describe all of them:

1. Firstly, this data structure can be used for those games, where the game stone swaps
place at different game states. It means that first, we need to delete a game stone
from its existing set; after that, we add it to a new position to make a member of
a new set. For example, Line of Action and Groups game, where each game states
one game stone moves from one location to others

2. The second application is in the capturing games, such as Line of Action, Go, Atari
go, and so on. In this case, when any player captures one or more game stones in a
game state, our proposed method can delete those from their existing set.

3. The next application is to design different types of connection games in a single
framework. This method can help to optimize the practical run time and the space
to design connection games.

4. Finally, if we design a connection game with classical UF, then it is not possible to
develop an undo button in the user interface (UI). Because, if we add any piece into
any union tree, there is no procedure to delete the last piece from the union tree.
To use this proposed data structure, we can design an undo button for any UI.
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5 Methods

In this research, we design two different frameworks. The first one is framework-A, where
there is no deletion operation. It is an improved version of the classical UF data structure,
where we maintain a list to store all the items in a union tree. However, framework-B
contains the deletion operation. Both structures help us to find out the answer to the
third research question, which is: How efficient is it to use union find deletion method in
comparison with the classical union find data structure? Moreover, both frameworks are
used the same optimization techniques. In the following, we discuss both structures, and
the code is available in the appendix section.

5.1 Framework-A

Framework-A contains five operations, which are makeset, connect, union, find, and group-
Size. This framework has no deletion operation.

5.1.1 MakeSet

In framework-A, the makeset is used to initialize the parent 3 array with a value. The
size of the array depends on the size of the game board. If the game board has n cells
then, the size of the array is n, where n > 1.

Algorithm 1 makeSet(final int totalV ertices, final int numberOfP layers)

1: parent = new int[numberOfP layers+ 2][];
2: itemsList = new int[numberOfP layers+ 2][];
3: for (int i = 1; i <= numberOfP layers+ 1; i+ +)
4: {
5: for (int j = 0; j < totalV ertices; j + +)
6: {
7: parent[i][j] = j;
8: itemsList[i][j] = null;
9: }

10: }

Explanation

As we mentioned before, framework-A is used in those games where the deletion operation
is inapplicable, and it is closer to the classical version of UF. So, during the initialization,
we have used each of the cells as an alive disjoint item (which is in the line: 7). Besides,
each cells can be a root of union tree; so, we initialized a 2-dimensional itemList with
null. There is another parameter used - called numberOfP layers, which helps to create
different objects of different players. To keep the overall implementation more general,

3parent is an array, which contains all the parent id of each array index.
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we have considered two extra objects per game: one for the neutral players, and the other
is used for all the common players information.

5.1.2 Union

Union is the main operation in the data structure. It contains some parameters, which
are activeIsLoop, dirnChoice, and v. In this function, v is a cell number, and it contains
a game piece that we need to add in any union tree. activeIsLoop is a boolean flag that
helps to detect isLoop operation (which we discuss later). dirnChoice is used to select
the direction of the connectivity of the union. This function does not return anything;
however, after executing this function, the game stone in v position can be a member of
any union tree.

Algorithm 2 union (final boolean activeIsLoop, final DirectionChoice dirnChoice, final
int v)

1: Create : neighboursList for the valid position v.
2: Create : v as a singleton
3:

4: for (int i = 0; i < neighboursList.size(); i+ +)
5: {
6: int i = neighbourList[i]
7: for (int j = i+ 1; j < neighboursList.size(); j + +)
8: {
9: int j = neighbourList[j]

10: if(ni and nj are connected)
11: break;
12: int rootP = find(ni, playerType)
13: int rootQ = find(v, playerType)
14:

15: if(rootP and rootQ are same)
16: then return
17:

18: if(groupSize(rootP ) < groupSize(rootQ))
19: {
20: Set : rootP as the child of rootQ
21: merge both itemLists of rootP and rootQ
22: }
23: else
24: {
25: Set : rootQ as the child of rootP
26: merge both itemLists of rootP and rootQ
27: }
28: }
29: }
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Explanation

In our implementation, we have used the special union algorithm, which can apply in
connection games. In 2018, Browne has lectured this algorithm at the Master’s course of
Intelligent Search and Games (ISG) in Maastricht University [Bro18].

To generalize the implementation for connection games, we have designed a union
operation, which can be used to connect the connection in any specific direction (i.e.,
all directions, orthogonal directions, forward slash directions, backward slash directions,
etc.). According to the base of a game’s requirement of connectivity, we select the valid
adjacent positions of v. All the valid places are in the neighbourList. Initially, we have
made the v as a singleton, which means a union tree with only one item (i.e. when v can
be a singleton union tree, then the parent of v is v. The itemList of v contains only one
set bit, which is v.).

After that, we merge the singleton of v with all the existing union trees in the
neighbourList (which contains the valid adjacent cell numbers). At that time, we have
used the WQUPC. For that reason, we first find the rootP (which is the root of the ni)
and rootQ (which is the root of v). According to the principle of the WQUPC to min-
imize the depth of the new union tree, we select the rootP or rootQ as the new root of
the union tree, which contains more items. If both trees have an equal number of items
than arbitrarily select one root as a new root of the union tree. For example, union tree
of rootP contains more items than union tree rootQ. So, parent[rootQ] = rootP and we
merge both itemlists of union tree rootP and rootQ. If rootP and rootQ contain the
same number of items, then parent[rootP ] = rootQ or parent[rootQ] = rootP can be
possible.

In the overall implementation, we have used the union operation two times for each
newly arrive game stone: one time union to creates the current player’s union tree and
the second time to add it in a common union tree, which is for all existing players.

5.1.3 Find

This function is almost the same as the classical UF data structure [SW11].

Algorithm 3 find (position, playerType)

1: Set : parentId = parent of position
2:

3: if (parentId == position)
4: then return position
5:

6: Otherwise, return find(parent[parentId], playerType)

Explanation

It is helped to identify the set name (i.e., the root of union tree) of position for the
playerType, where position is a cell name. Line: 6 is used for the path compression
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technique. Path compression is a heuristic technique, which helps to decrease the tree
traversing time to find the root name of a union tree.

5.1.4 Connect

This function is a boolean function with two input parameters position1, and position2,
which are the cell numbers of a game board. This function returns true if position1, and
position2 are the member of the same union tree, otherwise false.

Algorithm 4 connect(position1, position2, playerType)

1: Set : root1 = find(position1, playerType)
2:

3: if (position2 is in the itemList of root1)
4: then, return true
5:

6: Otherwise, return false

Explanation

Initially, we identify the root of cell position1 and name it as root1. We check whether
position2 is true in the root1′s itemlist or not. If position2 is in the itemlist of root1
then this function returns true. In the classical UF, the find operation is used twice in
a connect function, as there is no list for the items of the union tree. However, in this
implementation, we use the find operation once, to check if the position2 exists in the
same union tree or not.

5.1.5 GroupSize

This function returns the number of total items in a union tree.

Algorithm 5 groupSize(position, playerType)

1: Set : root1 = find(position1, playerType)
2: return itemList(root1, playerType).cardinality()

Explanation

We determine the root of cell position1 as name root1. Then check the cardinality of that
union tree and return it.
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5.2 Framework-B

The framework-B contains 6 operations, which are makeset, connect, union, find, group-
Size, and deletion. Here, the connect, and the groupSize operations are the same as
framework-A. Thus, they are not explained here.

5.2.1 MakeSet

In framework-B, the makeset is used to initialize the parent array with a specific value,
which is Unused. In this application, we define Unused = −1. Additionally, there are
two lists used for each union tree, which are itemsList and itemWithOrthoNeighbors.
The first list is needed for the same purpose of framework-A, and the second list is used
to keep the information of the orthogonal neighbors, which is used to calculate freedom
in the territory types games, such as Go, Atari go, Pentalath, etc. The other criteria of
this makeset is same as the makeset in framework-A.

Algorithm 6 makeSet(final int totalVertices, final int numberOfPlayers)

1: parent = new int[numberOfP layers+ 2][];
2: itemsList = new int[numberOfP layers+ 2][];
3: itemWithOrthoNeighbors = new int[numberOfP layers+ 2][];
4:

5: for (int i = 1; i <= numberOfP layers+ 1; i+ +)
6: {
7: for (int j = 0; j < totalV ertices; j + +)
8: {
9: parent[i][j] = Unused;

10: itemsList[i][j] = null;
11: itemWithOrthoNeighbor[i][j] = null;
12: }
13: }

Explanation

In most connection games, the initial starting condition of the game board can be empty,
or with some game stones in some specific cells of the game board. For example, Omega,
Hex, and Havannah start with an empty game board; however, Line of Action, and Groups
start with a fixed number of game stones in specific places. Thus, the presence and the
absence of a game stone in a cell is significant. That is the reason there is an indicator,
which is called Unused. The value of Unused can be any integer. In the classical version
of the UF, there is no parameter like Unused. Because all the existing disjoint data are
considered as present in the universe, this is one of the limitations in the classical UF
to integrate with connection game’s environment. For example, an empty board within
framework-A (where we follow the similar makeset of the classical UF) the groupProduct
and the groupCount are 1 and equal to the board size respectively. However, it is invalid.
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In framework-A, a singleton and a blank board cell have no difference. In the general
game playing system, it is essential to distinguish between them. Besides, in 2002, Tarjan
et al. showed some union find deletion methods, where they also used a new function-
called insert to make each item alive. In that research, insert a new item at that union
tree where it will be a member after executing union operation. Because in the classical
UF operation, only two union trees can be merged in a single union operation. However,
in our application, we can not follow their way as one game stone can be merged with
more than one union tree, which is in Theorem-2.

Framework-B, we also introduced a new list - called itemWithOrthoNeighbors. This
list is essential in territory games to performed the freedom calculation. It contains all
the items and the orthogonal positions of a union tree.

5.2.2 Union

The union operation is used for similar purposes as the previous framework. However,
this function needs two lists (i.e., itemsList, and itemWithOrthoNeighbors) instead of
one.

Explanation

As mentioned before, the union in framework-B is an updated version of framework-A.
Almost all the criteria are the same. However, we have used two lists here, so we need to
merge both lists.

5.2.3 Find

It is used to identify the set name (i.e., the root of a union tree) of position, where position
is a cell name.

Explanation

The find operation is same in both the framework-A and B. However, in framework-B,
this function does not check the absence of a game stone in a cell. So, if any game, we
access any empty cell of any player; in that case, the function returns position. The
absence of a game stone is determined by using the content of the parent array.
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Algorithm 7 union (final boolean activeIsLoop, final DirectionChoice dirnChoice, final
int v)

1: Create : neighboursList for the valid position v.
2: Create : v as a singleton
3:

4: for (int i = 0; i < neighboursList.size(); i+ +)
5: {
6: int i = neighbourList[i]
7: for (int j = i+ 1; j < neighboursList.size(); j + +)
8: {
9: int j = neighbourList[j]

10: if(ni and nj are connected)
11: break;
12:

13: int rootP = find(ni, playerType)
14: int rootQ = find(v, playerType)
15:

16: if(rootP and rootQ are same)
17: then return
18:

19: if(groupSize(rootP ) < groupSize(rootQ))
20: {
21: Set : rootP as the child of rootQ
22: merge both itemLists of rootP and rootQ
23: merge both itemWithOrthoNeighbors of rootP and rootQ
24: }
25: else
26: {
27: Set : rootQ as the child of rootP
28: merge both itemLists of rootP and rootQ
29: merge both itemWithOrthoNeighbors of rootP and rootQ
30: }
31: }
32: }
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Algorithm 8 find (position, playerType)

1: Set : parent = parent of position
2:

3: if (parent == Unused)
4: then return position
5:

6: if (parent == position)
7: then return position
8:

9: Otherwise, return find(parent[parent], playerType)

5.2.4 Deletion

This operation helps to delete an item or a group of items from a union tree. It is opposite
to the union operation.

Explanation

In this function, there are 3 parameters, which are deleteId, enemy, and groupDelete.
The deleteId is used as a reference for delete items. enemy is defined to indicate the owner
of the union tree. If the enemy is true, then items need to delete from the opponent union
tree or vice versa. The last parameter is the groupDelete, which helps to ensure how many
items can be deleted. If groupDelete = false, then a single item delete, otherwise, a group
of items deletes.

If we want to delete items from a union tree, then first determine the root of the
deleteId for that player or opponent player (which depends on enemy flag). After that,
copy the itemlist of that union tree in bitsetsDeleteP layer list. Then all the items of
that particular union tree needs to be delete. If the groupDelete = false, then subtract
deleteId from bitsetsDeleteP layer list. The union operation is applied to all the existing
items in the bitsetsDeleteP layer list- this reconstructs the previous union tree without
deleteId. At the reconstruction time, the same connectivity direction is used as previously.
However, if the groupDelete = true, then all the items of the player’s union tree is deleted.
So, it is not necessary to reconstruct any item for that player’s union tree. Similarly, in
both cases, a similar procedure needs to follow in the common player’s union tree. In
this implementation, after executing deletion operation, the reconstruction part helps to
produce the exact number of union trees. The newly produced union tree can be 0 or
more. In the Theoretical Analysis section, we show the correctness of this algorithm in
connection games environment.
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Algorithm 9 deletion (final int deleteId, final boolean enemy, final boolean
groupDelete)

1: if(!groupDelete)
2: {
3: if(enemy)
4: {
5: Set : deleteP layer = currentOpponentplayerType
6: }
7: else
8: {
9: Set : deleteP layer = currentplayerType

10: }
11:

12: Set : deleteIdRoot = find (deleteId, deleteP layer)
13: Set List : bitsetsDeleteP layer = itemlist of deleteId of deleteP layer
14:

15: for each item i in bitsetsDeleteP layer
16: {
17: Clear : parent[i]
18: Clear : itemList[i]
19: Clear : itemWithOrthoNeighbors[i]
20: }
21: clear(deleteId) in the list bitsetsDeleteP layer
22:

23: for each item i in bitsetsDeleteP layer
24: {
25: Apply : union operation for each i (reconstruction)
26: }
27: delete the same piece from common union tree
28: reconstruct all existing items in common union tree
29: }
30: else
31: {
32: Set : deleteP layer = currentOpponentplayerType
33:

34: Set : deleteIdRoot = find (deleteId, deleteP layer)
35: Set List : bitsetsDeleteP layer = itemlist of deleteId of deleteP layer
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36: for each item i in bitsetsDeleteP layer
37: {
38: Clear : parent[i]
39: Clear : itemList[i]
40: Clear : itemWithOrthoNeighbors[i]
41: }
42: delete the same group from common union tree
43: reconstruct all existing items in common union tree
44: }
45: return false

6 Games Algorithms/Ludemes

This study focuses on increasing the applicability of the union find deletion in the general
game system. All the proposed algorithm is implemented and tested in the Ludii game
general system [PSS+19]. The basic integration system is shown in the figure-2. In this
integration system, a game designer requires some user-friendly algorithm to design game
modelling (figure-3). Those algorithms are called Ludemes, which are designed with java
classes. Moreover, a game designer uses those ludemes to access the internal framework
for any game, where those algorithms name uses as a keyword in each game modelling.

(a)

Figure 2: Basic integration system in Ludii.

In connection games, some common aspects make a difference between one game to
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(a)

Figure 3: Havannah modeling in Ludii.

another game, such as connectivity, board types, cell types, and so on. Here, all ludemes
can be supported in different connectivity4, which is orthogonal connection, diagonal
connection, and all (which means all adjacent cell connection). The algorithms are tested
in all and orthogonal relationships. Moreover, the proposed algorithms are of two types.
Some algorithms are used in each game state of a game. Some of them are used in the end
game state to calculate the end score. It is possible to use all the ludemes for multiplayer
games.

4dirnChoice uses to indicate the direction choice for any game.
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6.1 IsConnect(number, regions, role, regionType)

IsConnect is a boolean type of ludeme with 4 parameters. It is used to check the connection
between a specific number of regions.

• number is an optional parameter. It defines the minimum number of regions that
need to connect.

• regions is used to the specific region in the game board.

• role refers to the type of player.

• regionType is defined any particular part of the game board, such as the north,
south, east, west, and north-south.

Mathematical Explanations

Assume that we have a set of regions R, R = {r1, r2, r3, ...., rp}, and a number, where
2 ≤ number ≤ p (number is an optional parameter, If number = null, then number = p).
The last move of the current game state is v. After executing (v), v is the member of a
union Tree T and the union tree T also increases its size. If the number of the intersection
of the items of union tree T and the regions R is at least number, then the function returns
true. This ludeme presently works with Hex, Havannah, Kensington havannah, Y-hex,
Cross, Gonnect, and Chameleon.

Algorithm 10 isConnect (number, regions, role, regionType)

1: Set : v = last move
2: Set : currentP layer = role
3: Union(v, currentP layer)
4: Set : connection = 0
5:

6: if (number == 0)
7: number = regiontype.size()
8:

9: for (i = 0; i <= regiontype.size(); i+ +)
10: {
11: if intersect(regiontype, itemList(v, currentP layer))
12: connection+ +
13: if (number == connection)
14: return true
15: }
16: return false
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Explanation

IsConnect helps to ensure the connectivity between a specific number of regions. For
example, in Hex, there are two separate regions for each player, and the winning condition
is to connect both regions. In this case, first, we add each movement of each player in
that player’s union tree. After adding each stone into a union tree, this ludeme checks
whether the latest produced union tree intersects with both regions or not. If the number
of intersection satisfies the condition, then it returns true. In figure-4a, the last move v
(with a yellow spot), merge two union trees, where the new union tree is intersecting two
regions. However, in the next figure-4b, the last move v joins some union trees.

In this way, we check the winning strategy of the Hex. Similarly, for the winning
strategy of havannah, each player needs to connect at least two corners or three edges or
make a loop. For the first two winning strategies, one can use this ludeme.

(a) v (yellow spot) merge two regions. (b) v has not connected two regions.

Figure 4: Two game states for Hex.
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6.2 IsLoop (all, enemy, empty, dirnChoice)

IsLoop

In connection games [Bro05], a loop is a connected component, which is created with one
or more player’s stones. Sometimes a loop can also be called a ring. In figure-5a, there are
two loops created by a white player in different game boards. A loop can be two types:
open loop, or full loop. Inside the open loop, there is at least a cell, which can be empty
or contains a non-friendly game stone. If an open loop contains at least an enemy piece
inside, then it is called open loop with enemy pieces or cycle (figure-5c). Consequently,
if an open loop contains at least an empty piece inside, it is called an open loop with
empty pieces. There is an empty open loop, which can be seen at figure-5a. However, if
the center of an open loop contains a friendly piece, then it is called full loop (figure-5b).
The classification of the loop is shown in a tree in figure-6.

(a) In hex. (b) In rhombitrihexagonal. (c) In square.

Figure 5: Loop in different types of game board.

Figure 6: The classification of a loop in hex game board (all adjacent connection).
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Importantly, the sizes, shapes, and the minimum number of the component to create
a loop also depends on the type of connectivity. Figure-3 shows some examples of the
different kinds of loops:

(a) All adjacent connection. (b) Orthogonal connection.

Figure 7: Open loop (white) in square game board.

(a) All adjacent connection. (b) Orthogonal connection.

Figure 8: full loop (white) in square game board.

(a) All adjacent connection. (b) Orthogonal connection.

Figure 9: open loop with enemy (white) in rhombitrihexagonal grid.
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(a) All adjacent connection. (b) Orthogonal connection.

Figure 10: Full-ring (black) in hex game board.

Mathematical Explanation

The game board can be described by an undirected and unweighted graph G = (V,E),
where, V is the set of vertices (in games, a vertex means a cell, which can hold a game
stone) and E ⊆ V × V , which is the set of edges. Assume that the last move in a game
state is v, where the degree of v is k (where, 12 ≥ k ≥ 4).

In this case, before adding v in any union tree, if all the adjacent friendly stones
make more than one disjoint group and at last two disjoint sets are the member of the
same union tree, then there is at least one open loop. Notably, to calculate the number
of adjacent disjoint sets, the type of connectivity is the same as the game connectivity.
Moreover, each set needs to contain at least one element related to v, which has the same
connectivity relation. However, for the full loop around the last move v, all the adjacent
friendly cells needs to be a connected open loop.

There is a special case for open loop in a game graph. In a game state for the last
move v, if there is an adjacent vertex is u, where u contains a orthogonal degree k and
k = 3. Then the previously mentioned rule of the open loop detection is not applicable
for all adjacent direction connectivity. For example, if dirnChoice = all directions, then
only 3 friendly pieces can create an open loop around u (which can be seen at figure-9a).
In this situation, we check all the orthogonal cells of u.

Common properties of a loop:

1. A loop is a connected component.

2. The graph diameter of a loop is at least 3.

3. The lastmove (i.e., v) is always on the circumference or in the center of the loop.

4. The lastmove (i.e., v) can make more than one loops (which is proven in Theorem-3).

5. Creation of an open loop v needs at least two disjoint sets of friendly neighbors,
where at least one stone in each set has the same connectivity relation with v. Here,
the connectivity means the specific connection of that game.

23



6. The last move v can create a full loop if all the adjacent friendly stones make an
open loop or last move v helps to make an open loop, which is around any other
friendly adjacent stone.

This ludeme present works with Andantino, Havannah, and Kensington havannah.
This ludeme has some optional parameters (i.e., all, enemy, empty, and dirnChoice),
which are describe in the following:

• all is defined to detect any types of loop, which is also set as a default type.

• enemy is used to return a loop with at least one enemy cell inside.

• empty determines a loop with at least one free cell inside.

• dirnChoice which can be any types of direction, such as all, orthogonal, diagonal,
etc.

Algorithm

The algorithm divided into two separate boolean ludemes: 1. isLoopAux, and 2. isLoop
for the purpose of loop detection. The isLoopAux is helped as an auxiliary part of isLoop.
isLoopAux executes before the last move v add in the union tree. The isLoopAux ensures
the possibility of an open loop in a single flag, which information saves into a boolean flag
called ringFlag. In the second or the main algorithm uses the information about ringFlag
to detect the loop. Here are two algorithms:
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Algorithm 11 isLoopAux()

1: Set: neighbourList = adjacent items of last move.
2: if( dirnChoice == All)
3: {
4: for (i = 0; i <= neighbourList.size(); i+ +)
5: Apply : localUnion(neighbourList[i])
6: for (i = 0; i <= neighbourList.size(); i+ +)
7: {
8: if( neighbourList[i] is a root) in localUnion
9: {

10: Set : RootI = neighbourList[i]
11: for (j = i+ 1; j <= neighbourList.size(); j + +)
12: {
13: if( neighbourList[j] is a root) in localUnion
14: {
15: Set : RootJ = neighbourList[j]
16: if : (RootI == RootJ) return true
17: }
18: }
19: }
20: }
21: }
22: if( dirnChoice == Orthogonal)
23: {
24: for (i = 0; i <= neighbourList.size(); i+ +)
25: {
26: Apply : localUnion(neighbourList[i])
27: Condition : atleast each set contains a orthogonal items with v
28: }
29: for (i = 0; i <= neighbourList.size(); i+ +)
30: {
31: if( neighbourList[i] is a root) in localUnion
32: {
33: Set : RootI = neighbourList[i]
34: for (j = i+ 1; j <= neighbourList.size(); j + +)
35: {
36: if( neighbourList[j] is a root) in localUnion
37: {
38: Set : RootJ = neighbourList[j]
39: if : (RootI == RootJ) return true
40: }
41: }
42: }
43: }
44: }
45: return false 25



Algorithm 12 isLoop ( Role, dirnChoice)

1: Set flag : fullring, enemy, empty, all, and defalt
2: Set : v = last move
3: Set : ringF lag = isLoopAux()
4: Union(v)
5:

6: if((allRing||default) && (ringF lag))
7: return true
8:

9: if( dirnChoice == All)
10: {
11: If there is an adjacent cell of v has degree 3
12: Check the minimum open loop around it
13: if(open− ring)
14: {
15: if(!(enemy||empty||fullring))
16: return true
17: if(enemy)
18: if(checkInsideEnemy) return true
19: if(empty)
20: if(checkInsideEmpty) return true
21: }
22: }
23:

24: for (i = 0; i <= neighbourList.size(); i+ +)
25: Apply : localUnion(neighbourList[i])
26:

27: Set : adjacentSetsnumber = disjoint Set in LocalUnion
28:

29: if(((adjacentSetsnumber > 1)&&(dirnChoice == All))
30: || ((adjacentSetsnumber > 0)&&(dirnChoice == Orthogonal)))
31: {
32: if(enemy&&ringF lag)
33: if(checkInsideEnemyWithDFS) return true
34:

35: if(empty&&ringF lag)
36: if(checkInsideEmptyWithDFS) return true
37:

38: }
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39: if(fullring||all||default)
40: {
41: i(adjacentSetsnumber > 1)
42: {
43: if(CheckOpenLoop(center(v)))
44: return true
45: if(CheckOpenLoop(circumference(v)))
46: return true
47: }
48: }
49: return false

Explanation

isLoop detects a loop. Users can specify type of loop to be used in game modeling. The
loop can be any type, and the default value is all.

(a) (b)

Figure 11: Function of isLoopAux.

The isLoopAux is the auxiliary part of the implementation, which executes before the
union operation execution. It identifies at least two disjoint sets in the neighbourList
of the last move v, which are the members of the same union tree. This function is an
essential part of detecting an open loop. However, each of the disjoint sets must have
at least one item, which has the same connectivity relation with v. In figure-11a (which
are the game graph of a square board), if disjoint sets A and B are the members of the
same union tree, then there is at least one open loop (all adjacent connectivity). However,
in the same figure, if we consider the orthogonal connection, then the position of A and
B is not sufficient enough to make an open loop, because the last move v and B has
no orthogonal relation. In this case, to create an open loop, at least one item of set B
is in the orthogonal position of v (which can be shown in figure-11b with orange box).
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This task is the primary function of the isLoopAux. The possibility of the open loop is
returned to the isLoop via union operation by a flag called ringFlag.

As mentioned before, isLoop executes after last move v is added into a union tree and
receives the output from isLoopAux. If a game needs open loop and if ringFlag is true,
then returns true. However, if a user wants a open loop with enemy, then a DFS search
helps to detect inside enemy piece. A similar purpose is applicable for the loop with
empty cell. This ludeme is used for the game with the board and the board less games.
For example, Andantino can be played as a boardless game. In a boardless game, the
DFS iteration is controlled by a parameter-called dfsItr. The value of the dfsItr is twice
the group size of an open loop. Because the DFS depth of the inside area of an open loop
never exceeds two times the number of items in an open loop.

For the full loop detection, there are two possibilities. Firstly, the last move v can be
at the center of a full loop, or secondly, the last move v is on the circumference of a full
loop. So, if all the adjacent friendly cells (of last move v) have formed an open loop with
corresponding connectivity, then it is a full loop. Similarly, the last move v can be on the
circumference of a full loop; in this case, there is at least one adjacent vertex, which has
an open loop at its adjoining list.

There is a particular case for triangular cell (which has 3 orthogonal adjacent ver-
tices). To detect a minimum open loop around a triangular cell with all connectivity, the
information from the isLoopAux is not helpful. For that situation, if there is an adjacent
cell that is triangular, then we check all the orthogonal cells of that triangular cell for
friendly items. If there is an open loop, then it returns true. Similarly, we use the same
procedure to detect the enemy piece or empty cell inside of an open loop.

6.3 GroupSizeProduct(playerType)

This ludeme is used at the end of a game. It helps to calculate the product of all existing
group size. This ludeme works with Omega.

Algorithm 13 groupSizeProduct (playerType)

1: Set : value = 1
2:

3: for each cell i in game board
4: Apply : union(i, playerType)
5:

6: for each cell i in game board
7: {
8: if (i == root of any union tree of playerType)
9: {

10: value = value ∗ groupSize(i, playerType)
11: }
12: }
13:

14: return value
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Explanation

This ludeme is used as an end function. In the last game state, we initially add all the
items in the union find data structure. Then we use the groupSize operation to obtain
the size of each of the union trees and multiply all the sizes. Finally, this function returns
the total value of the multiplication.

6.4 GroupCount(playerType, min)

This ludeme is used at the final game state for each player. There are 2 parameters: one
is the playerType and the other is min. The min is an integer value, which is used to find
out the more extensive groups than that. min is an optional parameter, and the default
value is 0. Currently in Ludii, Odd is used with groupCount.

Algorithm 14 groupCount (playerType, min)

1: Set : count = 0
2:

3: if : min == null
4: min = 0
5:

6: for each cell i in game board
7: Apply : union(i, playerType)
8:

9: for each cell i in game board
10: if (i == root of any union tree of playerType)
11: {
12: if (groupSize(root, playerType) > min)
13: {
14: count + = 1
15: }
16: }
17:

18: return value

Explanation

Initially, we create a union tree for the specific player (i.e., playerType). After that, the
count variable is used to calculate how many union trees are sizeable than the min value
and return the value of count.
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6.5 GroupSize(site, dirnChoice)

After executing union operation, this ludeme returns to the group size of last move v.
There are two parameters: one is the last move v, and the other is dirnChoice, which is
the specific direction of the union tree. GroupSize works with Manalatha.

Algorithm 15 groupSize (v, dirnChoice)

1: if : v == null
2: Set : v = last move
3:

4: Apply : union(v, playerType)
5:

6: return groupSize(v, playerType)

Explanation

This ludeme returns the group size of the last move v.

6.6 IsSingleGroup(playerType)

This ludeme returns a boolean value. If all the existing game stones of any player form a
single group, then this operation returns true.

Algorithm 16 isSingleGroup(playerType)

1: Set : v = last move
2: Set : group = 0
3: Apply : union(v, playerType)
4: for each cell i in game board
5: {
6: if (i == root of any union tree)
7: {
8: group+ +
9: }

10: }
11: return (group == 1)

Explanation

This function recognizes the player, who create a single group. This operation works with
Line of Action, and Groups.
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6.7 Freedom()

This ludeme returns the number of freedom of any position. Freedom is the empty adjacent
orthogonal position for a group of game stones. This ludeme works with Go, Arati-Go,
and Pentalath.

Algorithm 17 freedom()

1: Crate : nList = all orthogonal positions
2:

3: if (all orthogonal positions have no game stone)
4: return total number of orthogonal positions
5:

6: Crate : opponentAllBitset
7: Crate : sameAllBitset
8: Crate : nBitset
9:

10: for each cell i in nlist
11: {
12: if (i == friendly piece)
13: {
14: set : nRoot = find (nList[i], playerType)
15: sameAllBitset.or(itemsList(nRoot, playerType))
16: nBitset.or(ItemWithOrthoNeighbors(nRoot, playerType))
17: }
18: }
19:

20: Update : opponentAllBitset to store all the opponentitemList
21: Update : nBitset with all the orthogonal positions of v
22:

23: opponentAllBitset.and(nBitset)
24: nBitset.xor(opponentAllBitset)
25: nBitset.xor(sameAllBitset)
26: nBitset.clear(v)
27:

28: return nBitset.cardinality()

Explanation

In the proposed framework-B, there is a list-called ItemWithOrthoNeighbors. This list
keeps the information of the items, and all adjacent orthogonal positions of a union tree.
In each time, when union operation happens then, this list is updated as the same as the
ItemLists. This list of information helps to calculate the freedom of any position with
some boolean operations.
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The calculation of freedom of any position v are 2 types. The simple one is if there is
no friendly adjacent neighbor in the orthogonal position of the v (here, v is the specific
position, which is used to calculate freedom). The other type is if there is at least one
friendly neighbor at the direct location of v. In the first case, if there are no friendly pieces,
then the number of empty orthogonal adjacent cells is the freedom of that position. How-
ever, for the second case, if there is at least one friendly piece in the orthogonal neighbor’s
position, then we create 3 lists. The first list is sameAllAdBitset, which is used to merge
all the items of orthogonal adjacent friendly groups. The second list isnBitset, which
contains all itemsWithOrthogonalNeighbors information of orthogonal adjacent friendly
groups and all the orthogonal position of v. The last list is opponentAllBitset, which
contains all the existing opponent’s game stones information.

Initially, calculate all the overlapping positions of the opponentAllBitset and nBitset
lists and store the overlapping position into opponentAllBitset. At that time, the oppo-
nentAllBitset contains all the opponent items list, which are in the orthogonal adjacent
position of the group of v. Next update the nBitset to subtract all the items of the oppo-
nentAllBitset and sameAllAdBitset lists. As the nBitset initialised with all the items list
of the group of v and their direct positions. So, after substracting, the opponentAllBitset
and sameAllAdBitset lists from it, the nBitset contains all the freedom position and v.
Finally, subtract the v from the nBitset list. As a result, the elements of the nBitset list
are the freedom of v at that game state. This algorithm returns the number of freedom
of the position v.

Importantly, this function works with checkmove operation. Here, we have not added
v at any union tree, because to add an item and then immediately delete the same item
would decrease the functional performance of a game. However, we have used all the
necessary information from the data structure.

6.8 Enclosed()

This ludeme returns a legal move of the current player and helps to capture the adja-
cent opponent’s group, which have no freedom. This algorithm is working with Go,and
Pentalath.

Explanation

This operation captures the opponent adjacent groups, which have only one freedom.
Here, the single freedom is important because, if we apply the current move, then that
opponent group’s freedom will be zero. At the starting of the algorithm, we set sameAll-
Bitset list, which contains all the current player’s friendly stones. Then check all the
orthogonal neighbor’s position of v to search the nonfriendly group with one freedom.
For that reason, first, copy all the information of itemsWithOrthogonalNeighbors from all
the adjacent union tree into a list, which is numBit list. Then subtract all the items of
the opponent adjacent group from the numBit (where, numBitset.xor(itemsList)). At
that point, numBit contains all the direct orthogonal positions of that opponent group.
In this numBit list, if there any friendly game stones, then subtract them from numBit
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Algorithm 18 enclosed()

1: Create : sameAllBitset to store all the existing friendly itemList
2:

3: for each cell i in valid neighborsList
4: {
5: Set : surrounded == false
6: if (neighbourList[i] is enemy pieces)
7: Set : pieceundertheret = neighbourList[i],
8:

9: Set : root = find (pieceundertheret, opponentplayerType)
10: numBitset= itemWithOrthogonalNeighbours (pieceundertheret, opponentplayerType)
11: numBitset.xor( itemsList (pieceundertheret, opponentplayerType))
12: Set : tempBitset = numBitset
13: tempBitset.and(sameAllBitset)
14: numBitset.xor(tempBitset)
15:

16: if(|numBitset| == 1)
17: surrounded == true
18:

19: if(surrounded)
20: {
21: deletion(all items of opponentplayerType)
22: }
23: }
24: return moves
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list. Now, the numBit list contains the total freedom of an opponent group. If the size
of numBit is one, then the enclosed operation helps to remove that opponent group. So,
for a move more that one opponent group can be removed from the game board. All the
group items deletion can be done by the deletion operation.

6.9 SizeTerritory()

This ludeme is used to calculate the end score of the territory based games. It returns the
total number of territories of each player. This operation is based on the local union find,
which means this operation is not directly connected with framework-A or framework-B.
This ludeme works with Go, and Pentalath.

Algorithm 19 sizeTerritory(role)

1: Initiallize : Array localParent as Unused with the boardSize
2: Initiallize : bitsetList localItemWithOrth as with the boardSize
3: Initiallize : Array rank as 0 with the boardSize
4: for each cell i in gameBoard
5: {
6: if (cell[i] is free)
7: Add : localunionRank(cell[i])
8: Add : allOrthogonal position and (cell[i]) in localItemWithOrth List
9: }

10: Set : count == 0
11: for each unionTree i in gameBoard
12: {
13: if there if any enemy piece in the localItemWithOrth List
14: continue
15: else
16: {
17: count + = emptyGroupsize
18: }
19: }
20: return count

Explanation

In the territory based games, we need to calculate the total territories of each player.
The territory is the empty space, which is enclosed by the friendly player’s game stone.
For that reason, we have calculated all the empty group in the game board at the final
game state. In this function, we have used local union find with rank. There is a list
(which called localItemWithOrth), which keeps all the information on the items list and
their orthogonal neighbors. At the end of the game, when there is no valid move for the
current player, then this function starts executing.
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All the parameters (such as, localParent, localItemWithOrth list) are initialized with
the same size as the board size. Then apply local union to make the group for all the
empty space in the last game state. After adding all the empty space in the local union,
group information is check. If there is a group which is surrounded by a friendly player’s
game stones, then calculate the number of empty cells using a count variable. However,
if any opponent player’s stone encloses an empty group, then ignore that group.

We use a separate UF structure for this implementation, as this operation is always
executed at the end state of a game. If we use the proposed framework for this function,
then all related information needs to be update (i.e., union and deletion) in each of the
game states. As a result, the performance of a game would decline. So, to keep the
total procedure efficient and straightforward, we keep this operation separate from the
proposed framework.
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7 Theoretical Analysis

In framework-B, the makeset operation performs in O(n2) time, where n is the size of the
game graph. In this operation, we initialize the game board with empty cells and each
cell has two null lists. Furthermore, for the implementation of the data structure, we have
used bitset 5 to make both lists. As a result, if the board size is huge (such as 41× 41 in
case of boardless games in ludii), the framework can perform properly.

In the union operation, we have used the WQUPC. It is the properties of the Weighted
Quick Union, that when two different sized union tree merges, then the smaller tree’s
root is the child of the other tree’s root. However, if both trees are of the same size, then
arbitrarily choose one root as a parent of another root.

In this implementation, we initialize the universe as empty. So, when each game stone
is placed on the game board, then the algorithm searches for friendly game stone in the
valid neighbors. The valid neighbors depend on the direction of the connectivity (it can
be orthogonal, diagonal, or all the adjacent cells). This connection relates to the specific
game, where we use any related ludeme.

In a union operation, two cases can appear, firstly, the last move v may not have
friendly stones in valid positions, or it can happen that there is one or more friendly game
stone in its valid area. In the first case, the last move v makes a singleton with two lists.
The first list is the ItemLists, which contains only one item, and the second list contains
all the orthogonal cells of v. The second list is essential for territory games. In another
case, it is possible that there is one or more friendly game stone in its valid position. Then
we need to merge all the neighbors union trees into a single union tree.

To maintain the two lists in each position is very costly. So, at the union operation,
when two lists merge into the root’s list. Then we clear the child lists. As a result,
practically, in any game state, if there is t number of union tree, then we need 2× t lists.
This optimization technique makes the union find deletion efficient for connection games.

In this study, we are interested in designing a common framework for connection
games, so we have tested the proposed framework into the Quick Union (QU), Ranked
Quick Union with Path Compression (RQUPC), and Weighted Quick Union with Path
Compression (WQUPC). In the application level, we have found the WQUPC works
better than the others, which is discussed in the Experiments section. There are two
primary differences between applying the union find in connection games and general
applications. Firstly, in the graph, we add an edge to perform union operation between
two vertices. However, in connection games, we add a vertex (i.e., the cell with game
stone) and merge it with all the existing neighbors union trees. Secondly, in each of
the union operation in the graph, we merge at most two union trees. Nevertheless, in
connection game applications, one game stone merges bk/2c union trees (where k is the
degree of any cell in a game board and 3 ≤ k ≤ 12 [Bro05]).

As mentioned before, in the proposed deletion operation, we are able to delete more
than one item together. So, for some connection games, especially where a group of stones
can be capture, it is a great option. The deletion operation has some parameters, which
are delete id v, enemy, and group. The first one is v, which is the id used to referred to

5BitSet is a class defined in the java.
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delete item or items. The next one is enemy, which is a boolean flag, if the flag enemy
is false, then we delete an item from the current player union tree. Otherwise, the item
will delete from the next player’s union tree. In most of the multiplayer games, the next
player is the opponent of the current player. The last parameter is the group, which is
the boolean flag used to indicate group of items that will be deleted. In the experiment
time, we use a single item delete option. Currently, there is no interface function in the
ludii system, which is able to delete more items.

This reconstructed deletion method is an invariant of the rebuilding method, which
was proposed by Tarjan et al. [Tar72]. In the rebuilding method, there is a parameter α,
whose value can be two or more; it depends on the application. If there is a union tree
with size |S| and α is 2. In this case, when we delete first |S/α| (or |S/2|) items, then the
entire tree needs to be rebuilt again. This method could be a good option for the other
application cases, where the connectivity of the union tree would not change even after
removing some vertices. However, in our application, if we delete one game stone from
an existing union tree, then the tree may need to be split into more subtrees to preserve
the connectivity. Sometimes in our applications, one game stone merges with more than
two union trees (which is proven in theorem-2). So, to keep an efficient way to remove
a game stone or a group of game stones from any union tree, we need to reconstruct it.
Let c be a parameter, which is the size of items needed to be deleted from a union tree
with size |S|, then we apply reconstruction for |S| − c items, where 1 ≤ c ≤ |S|. The best
case happens in the group capturing games (such as Go, Pentalath, etc.) when we delete
a large group of items from a small union tree. However, the worst-case happens when
we delete one vertex from a large union tree.
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Theorem-1:

In a balance 6 connection game (without capturing stone), if the game board contains n
cells with p players, then the size of any union tree for each player’s at most bn/pc, where
p > 1 and n >> p.

Proof:

The board size n for a connection game is always finite. However, in most cases, a game
is started with an empty state. At that point, there is no union tree existing on the game
board. As a result, for any number of players, all union tree sizes are equal, which is 0.

After the first round of a game, where all the players place one (or two) game stone,
the size of each union tree can be 1 (or more) for each player. So, the size of each union
tree is less than bn/pc as n >> p.

Without loss of generality, we may assume that at a game state t, in the board con-
tains m game stones, where, m = t× p and m << n. Here, c is a constant integer, which
uses to explain the number of stones that can be placed in one game state by each player.
As we know that in a balanced game, all the players have to place an equal number of
the game stones in each turn, and most of the cases, it is 1. The total numbers of each
player’s stones are m/p. As we know, all the stones are on the game board, so m << n.
That is the reason m/p < bn/pc. In the next game state t + 1, the game board contains
a total m′ game stones.
where,

m′ = (t+ 1)× p× c

So,m′ = t× p× c+ p× c

m′ = m+ p× c

For a similar reason, at t + 1 game state, all the game pieces are on the board. So, m′
at most n. Thus, all the game stone of each player makes 1 union tree, then the size at
most bn/pc. If there are more union trees, then the size is less than the bn/pc. �

6Balance means each of the players uses the same number of game stone in his turn.
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Theorem-2:

If the last move v in a cell in a game graph with degree k, Then union operation can merge
at most bk/2c union trees. For the same reason, deletion operation can be split one union
tree at most bk/2c.

Proof:

The game board can be a regular shape, semi-regular shape, or irregular shape. The game
graph is based on the types of game board [Bro05]. The game graph is a connected graph,
which can be a planer and a non planar graph. Let, at a game state t, there is the last
move at v cell, and v has a degree k (where 3 ≤ k ≤ 12 [Bro05]).

Now, let l is the number of friendly game stone at the valid neighbors of last move v.
If l = 0, which means there are no friendly stones at the valid adjacent list of v. At that
point, v is a singleton union tree.

If l = 1 or there is only one friendly stone, say w. then v will be a member of the w
union tree.

Assume that l ≤ k/2, then all the friendly stones can be separated from each other
at the adjacency list. So each can be a member of a separate union tree. When last
move v is adjacent to all friendly stones, then all of them merge into a union tree. At the
figure-12, we have shown that the last move v can combine some union tree in a square
board. From the first picture, it can be easily understandable that the last move v can
merge 4 adjacent union tree, whereas the degree of cell v is 8. However, in the second
figure, there are also 4 adjacent cells contain black stone, and there are 2 union trees.
The last move v combines both trees.

Figure 12: Last move v (with star) merge several union trees.

Without loss of generality, assume that l > k/2, then there the adjacent union trees
can not be bk/2c. The number of possible adjacent union tree is always less than bk/2c.
As a result, we can say, the last move v in a cell with a degree k, Then union(v) can
merge at most bk/2c union trees.

For a similar reason, if we perform the delete operation. Then one union tree can be
divided into several sub-trees and the total number of sub-trees at most bk/2c. �
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Theorem-3:

In a game state, there are at most bk/2c−1 new open loops possible, where k is the degree
of the cell of last move v.

Proof:

An open loop is a connected component with some friendly game stones, where there is
at least a middle cell, which is not occupied by any friendly game stone.

(a) One open loop. (b) One open loop divide into 4.

Figure 13: Last move (with star) makes 3 new open loops.

From theorem-2, it is clear that one game stone can merge at most bk/2c union trees
in connection games. So, in the adjacent list of the v also has at most bk/2c disjoint cells
that are occupied by friendly stones. There are at least has one member in each of the
disjoint sets, which protects the connectivity properties with v. If two of the adjacent
disjoint sets are the member of the same union tree, then it creates is an open loop. If
all of the disjoint sets are members of the same union tree, then there are bk/2c of open
loops around the v. Importantly, in the figure-13a, which is the previous game states of
figure-13b (i.e., before arriving v), there is a loop with all the items and v helps to divide
that open loop into bk/2c smaller open loops. As a result, the number of open loop is
increased by the v is bk/2c − 1. �
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8 Experimental Section

All the experiments were done in the Ludii general game system [PSS+19] and the values
of the number of playouts per second (i.e., p/s) and the moves per second (i.e., m/s) were
calculated.

Test-1

The purpose of Test-1 was to compare the efficiency of the Quick Union (QU), the Ranked
Quick Union with Path Compression (RQUPC), and the Weighted Quick Union with Path
Compression (WQUPC) for connection games. For that purpose, we selected framework-
A with two different games, which were Chameleon, and Hex. We selected Chemelon and
Hex for the test because those use isconnect ludeme. The isconnect ludeme relates to
union find framework. Both games are used the same types of board, and the number of
players is equal. However, Chameleon uses one more ludeme (i.e., line).

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 14: Three different UF methods in Chameleon with different board sizes.

The figure-14 shows that the performance of all selected UF in p/s and m/s for 4
types of Chameleon (the board size are 7×7, 11×11, 15×15, and 19×19). Here, all three
methods performed almost closer to each other.

For Hex, we selected odd-sized hex board ranging from size 7 to 19. In figure-15, the
performce of QU varies than the other two methods on the smaller boards. However,
when the board size is medium and large than for the p/s are the same for all. However,
on larger board, the performances of QU declined. The performance of RQUPC and
WQUPC are almost similar in all the tests.
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(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 15: Three different UF methods in Hex with different board sizes.

Test-2

The correlation between all UF methods was tested using framework-B (i.e., UFD). This
experiment was done with a board size 9×9 for games Atari Go, Go, and Gonnect. We
selected those three games as all of them use some common ludemes (such as. freedom
and enclosed). Moreover, all the games are used square shape game board and the game
stone places in the intersection of the board lines.

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 16: Three UF methods in framework-B with the same board sizes.

It can be shown in figure-16, the WQUPC performed a bit better than the RQUPC
and the QU as the standard deviation of the data is very low. Here, all the selected games
have different game rules; however, all of them use orthogonal connectivity. The Arati-Go
is not a capturing game, so the p/s is higher than the other two games. Nevertheless,
Go, and Gonnect have capturing facility, so each of the intersection (i.e., the position of
a game stone) can be used more than one times, and union and deletion operations are
frequently used in both games. Thus, p/s and m/s in Go and Gonnect are lower than
Atari go.
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Test-3

The purpose of Test-3 was to compare the existing brute force methods with the UF
frameworks. We analysed two separate tests during the experimental period. The first
one was a brute force method and isConnect (in UF framework) with the game Hex. In the
second test, we chose Line of Action with UFD. In each game state of line of Action, one
game stone moves from one cell to another cell. So, the union and the deletion operation
execute at least one time per game state. The ludeme isSingleGroup used to detect the
winning strategy. However, a brute force algorithm checked all the game stones were in
the same group or not.

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 17: Brute force method Vs Framework-A (UF).

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 18: Brute force method Vs Framework-B (UFD) with Line Of Action.

From figure-17a, it is apparent that in the smaller board size (7×7, and 9×9) the brute
force method worked well than the UF. Ludii is a massive game general system, which
is for board games, card games, dice games, mathematical games, simple video games,
and so on. This system follows a state-based mechanism. It means each of the game
state copy data from the previous state. For the smaller board size of Hex, to copy the
games state in each time might reduce the performance of the UF. Nevertheless, in the
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medium and the large game board sizes, the performance of the UF is better than the
brute force method. Notably, if the game board size increased, then the m/s of the UF
slowly declined (figure-17b). However, in that case, the m/s of the brute force method
sharply dropped. It happens as UF took the almost same time to connect any piece to
the union tree, which does not depend on the board size.

In the Line of Action, the performances of the UFD are same as the without UF
(figure-18). In each game state, when a game stone moves one cell to other, then here
reconstruct one of the existing union trees. Most of the time then the average size of
the union tree could be 8 to 10 (in common player union tree) or less (in player’s union
tree). In our implementation, the UFD has a robust optimisation technique. So, the
performance of the framework-B was almost the same as the brute force method.

Test-4

The average performance of Andantino with hex and square versions were compared by
using framework-A. Andantino is generally played with hex pieces. Here, we have named
it hex version. However, for the test, we redesigned the Andantino with the same game
rules using square pieces, which is celled square version.

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 19: Andantino with different types of cells.

The game rules and the connectivity (i.e., all adjacent connection) of both versions of
Andantino were the same. Andantino is originally a boardless game. However, in Ludii
game general system uses 41×41 invisible board for both versions. The differences between
hex and square connectivity in large graph are highlighted in figure-21a and figure-21b.
In both cases, the square Andantino performed better than the hex Andantino. The
winning strategy of Andantino is to make a cycle or make a line of 5. Our framework was
connected with cycle detection. It is possible that in a square grid (where a cell with 8
adjacent cells) making a connection is quicker than in a hex grid.
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Test-5

To compare the differences between hex and square cells with orthogonal connection, the
games Pentalath and Go with framework-B were selected. For this test, we used Pentalath
with base-5 (i.e., total cells 61) and Go with base-8 (i.e., total cells 64) with WQUPC.

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 20: Pentalath and Go in Framework-B.

Both games have a plethora of similarities. However, Pentalath has an additional
winning condition. The extra winning condition for the Pentalath is to create line 5. For
this reason, Pentalath has a higher p/s than Go. Figure-20b, shows that the m/s of Go
is better than Pentalath. The reason could be that for Go in any union operation merges
at most 2 union trees. However, in Pentalath union operation merges at most 3 union
trees.

Test-6

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 21: Line of Action and Groups in different UFD.

In order to assess the efficient UF method in framework-B, repeated-measures of the
Line of Action and the Groups were used. In the Line of Action and the Groups, in each
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game states the existing one game piece moves from its cell to another cell. As a result,
one existing union tree needs to reconstruct in every movement, which is the worst case of
the deletion operation. Moreover, both games have an identical winning condition with
the same types and sizes of the game board. However, they have some dissimilarities,
such as the connectivity, capturing facility, and the number of stones.

Figure-21 shows some of the main characteristics of the Line of Action, and the Groups
in framework-B. The p/s of the Line of Action is higher than the Groups, as the Line of
Action allows capturing pieces, so the number of stones decreases with the time. Moreover,
this game has all adjacent connectivity, so it is faster to form a single group than the
orthogonally connected game (Groups has orthogonal connectivity). However, the m/s of
the Groups is higher than the Line of Action, because the Groups has a lower number of
game stones than the Line of Action(i.e., where Line of Action has 12 stones, and Groups
has 6 stones). Importantly, for both games, the RQUPC and WQUPC performed very
carefully in p/s. Nevertheless, WQUPC performed better in m/s than the other two UF
methods (figure-21b).

Test-7

(a) Playouts per second (p/s). (b) Moves per second (m/s).

Figure 22: Framework-A in Havannah and Kensington havannah.

Test-7 was used to analyze the relationship between the different game graphs with
the same size (i.e., total cells 61). We selected Havannah, and Kensington havannah 7.
Both games have the same winning conditions and the same connectivity.

There was a significant difference between the p/s and the m/s of both games. Kens-
ington havannah showed a higher p/s than havannah (which can be shown at figure-22a).
As, each player can win to make an open loop with 3 game stones, whereas for Havannah
needs at least 6. However, in another figure, the m/s in Kensington havannah is lower
than Havannah. Because in Kensington havannah, there are some cells with degree 3, so
it needs time to check the particular case of a loop.

7It is a new game, which is invented by Cameron Browne, 2020.
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Test-8

The last research question aim to find out how efficient framework-B is in comparison with
framework-A for connection games. For this test, we selected Y-hex 8, Cross, and Omega
with WQUPC. For Y-hex and Cross, the board sizes of 3 and 6 were used respectively.
We selected both games as in each of the game state Y-hex is used isConnect one time.
However, Cross is used isConnect 5 times. For Omega a standard board size of base-5
with the different number of players was used. We chose Omega as during the experiment
time Omega is the only option to check the multi-players game.

Importantly, when we checked framework-A, then both frameworks existed in the
Ludii game general system. Nevertheless, when framework-B was tested, then we ignored
framework-A.

8This game is invented by Eric Piette, 2019. The game rules are the combination of popular games
Y, and Hex.
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(a) In Y-hex (p/s). (b) In Y-hex (m/s).

(c) In Cross (p/s). (d) In Cross (m/s).

(e) In Omega (p/s). (f) In Omega (m/s).

Figure 23: Framework-A Vs. Framework-B in different aspects.

The most striking result to emerge from figure-23 is that the average performance of
both frameworks is the same. In the Y-hex and Cross, when the number of board size
increases than p/s and m/s declined in both methods. Thus, if we repeatedly use UF
related ludemes in any game modelling, then there is no significant gap between UF and
UFD. In the multiplayer game, the result shows that if the number of player gain than
p/s and m/s drop. As a result, we can summarize that in a general game system, we
can easily replace the classical UF by the proposed method because the UFD has more
applicability than the UF.
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9 Discussion

Several publications have shown that the classical union find has been used in some 2-
player connection games. However, no exact information was found regarding union find
deletion data structure in connection games. This study set out with the aim of assessing
the importance of union find deletion in general game system for connection games.

The current study found that union find deletion is practically applicable in connection
games, which provides a plethora of facility to design different types of connection games
in a single framework. It also helps to use a limited amount of memory in a general game
system. Moreover, this new framework removes the common limitation to use the undo
button in the graphical user interface.

The union find deletion data structure can be applied in different types of condition,
such as any piece moves from one cell to another, stone captures in the capturing games,
and also all the game condition, where previously classical union find was used. Test-3
shows that the performance of UFD is almost the same (in Line of Action) or better
(in medium or large board size Hex) than the traditional brute force method. Because
the implementation of UFD is designed with java bitset class and a robust optimization
technique. However, for the capturing games (such as Go, Arati go, Pentalath), we
have no information about any other alternative methods, which is comparable with our
implementation. Moreover, the UFD is capable of operating on 2 or more player game
and the different size and types of the game board. It is used to specify any connectivity
direction in a game. It is also possible to use different connectivity for the various player
in a single game (for example, the white player has forward slash connection, and the
black player needs backwards slash connection). Additionally, UFD supports different
types of game graph.

The third and most crucial question in this research was how efficient is it to use
union find deletion method in comparison with the classical union find data structure?
The results of this study indicate that in 2 or more players games, the UF and UFD have
the same efficiency. Moreover, the UFD helps to integrate more games in a corresponding
data structure than the UF. So, it could be possible to replace UF by UFD in Ludii game
general system.

Presently, isloop is a boolean operation. However, it is possible to design this algorithm
as an integer ludeme, where the new function will return the total number of the loop at
the end state of a game. The properties of the integer isloop operation is explained in the
Theorem-3.

Ludii is still growing general game system. During the testing period, there is a limited
number of multiplayer connection game available. So, we have done only one test for that
purpose (Test-8). In future, one can do the same analysis for the other types of games,
which can be based on different ludeme in UFD.

In this study, UFD and UF provide an excellent result in the medium or large board
size. However, in the small board size, the UF does not show a better performance than
the classical brute force method (Test-3). It is possible that the UF or UFD framework
would not provide better result to operate small groups, such as detect line 4 or line
5. Moreover, anyone can analysis the same framework in a minor general game system,
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which is not state-based. The result could be different than our result.

10 Conclusion

The purpose of the current study was to determine the practical benefits of the union find
deletion (UFD) data structure in connection games and to find the appropriate situations
to apply it. The research has shown that it is possible to use the UFD in connection games,
which gives more usability to design connection games in different aspects. The UFD data
structure can be used in several cases of connection games, such as determine the number
of connection, capturing pieces, piece movements, pattern recognition, number of group
identification etc. The main goal of the current study was to determine the efficiency
of using UFD in comparison to classical UF. These findings suggest that in Ludii game
general system, the performance of both data structure are almost the same. As a result,
we can use UFD instead of UF. Moreover, the UFD has al least equal effectiveness with
the brute force method.

To use this framework, one user can reuse the same memory information in each game
state for a single game. As a result, a game system designer needs not to consider the
state base general game system. For that reason, the UFD is helpful to increase the
performances of connection games.

Future works might be involved to apply the same method in different sectors, such as
Wireless sensor networks, Telecommunications networks, etc. As in those areas also have
some problems, which relates to union find deletion. The connectivity of a network grid
has similar characteristics to the games board. This application is another idea worth
exploring.

50



References

[ATG+05] Stephen Alstrup, Mikkel Thorup, Inge Li Gørtz, Theis Rauhe, and Uri Zwick.
Union-find with constant time deletions. ACM Transactions on Algorithms,
11(1), 2005.

[Bro05] Cameron Browne. Connection Games - Variations on a Theme. A K Peters,
2005.

[Bro18] Cameron Browne. Mcts and deep learning, class lecture in course intelligence
search and games. Maastricht University, 2018.

[BT12] Cameron Browne and Stephen Tavener. Bitwise-parallel reduction for con-
nection tests. IEEE Transactions on Computational Intelligence and AI in
Games, 4:112–119, 2012.

[BY11] Amir M. Ben-Amram and Simon Yoffe. A simple and efficient union-find-delete
algorithm. Theor. Comput. Sci., 412(4-5):487–492, 2011.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[Ewa12] Timo Ewalds. Playing and solving havannah. 2012.

[GF64] Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm.
Commun. ACM, 7:301–303, 1964.

[KST02] Haim Kaplan, Nira Shafrir, and Robert E. Tarjan. Union-find with deletions.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’02, pages 19–28, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics.

[PSS+19] Eric Piette, Dennis JNJ Soemers, Matthew Stephenson, Chiara F Sironi,
Mark HM Winands, and Cameron Browne. Ludii-the ludemic general game
system. arXiv preprint arXiv:1905.05013, 2019.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Profes-
sional, 4th edition, 2011.

[Tar72] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. J.
ACM, 22:215–225, 1972.

51



Appendix A Framework-A

A.1 unionInfo.java

package u t i l ;

import java . i o . S e r i a l i z a b l e ;
import java . u t i l . Arrays ;
import java . u t i l . B i tSet ;

/∗∗
∗ Contains a l l the i n f o / s t o r a g e s f o r the Union−f i n d .
∗
∗ @author tahmina
∗
∗/

public class UnionInfo implements S e r i a l i z a b l e
{

private stat ic f ina l long se r ia lVers ionUID = 1L ;

protected int [ ] [ ] parent ;
protected BitSet [ ] [ ] i t emsL i s t ;
public int t o t a l s i z e ;

/∗∗
∗ Constructor
∗ @param t o t a lV e r t i c e s The s i z e o f the game board .
∗ @param numberOfPlayers The t o t a l number o f p l a y e r s .
∗/

public UnionInfo ( f ina l int t o t a l V e r t i c e s , f ina l int numberOfPlayers )
{

parent = new int [ numberOfPlayers + 2 ] [ ] ;
i t emsL i s t = new BitSet [ numberOfPlayers + 2 ] [ ] ;
t o t a l s i z e = t o t a l V e r t i c e s ;

for ( int i = 1 ; i <= numberOfPlayers + 1 ; i++)
{

parent [ i ] = new int [ t o t a l V e r t i c e s ] ;
i t emsL i s t [ i ] = new BitSet [ t o t a l V e r t i c e s ] ;

for ( int j = 0 ; j < t o t a l V e r t i c e s ; j++)
{

parent [ i ] [ j ] = j ;
i t emsL i s t [ i ] [ j ] = null ;
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}
}

}

public void setParent
(

f ina l int ch i ld Index ,
f ina l int parentIndex ,
f ina l int p layer

)
{

parent [ p laye r ] [ ch i ld Index ] = parentIndex ;
}

public int getParent
(

f ina l int ch i ld Index ,
f ina l int p layer

)
{

return parent [ p laye r ] [ ch i ld Index ] ;
}

public BitSet ge t I t emsL i s t
(

f ina l int parentIndex ,
f ina l int p layer

)
{

return i t emsL i s t [ p laye r ] [ parentIndex ] ;
}

public void set I tem
(

f ina l int parentIndex ,
f ina l int ch i ld Index ,
f ina l int p layer

)
{

i t emsL i s t [ p laye r ] [ parentIndex ] = new BitSet ( t o t a l s i z e ) ;
i t emsL i s t [ p laye r ] [ parentIndex ] . s e t ( ch i ld Index ) ;

}

public void mergeItemsLists
(

f ina l int parentIndex1 ,
f ina l int parentIndex2 ,
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f ina l int p layer
)
{

i t emsL i s t [ p laye r ] [ parentIndex1 ]
. or ( i t emsL i s t [ p laye r ] [ parentIndex2 ] ) ;

i t emsL i s t [ p laye r ] [ parentIndex2 ] . c l e a r ( ) ;
}

public boolean isSameGroup
(

f ina l int parentIndex ,
f ina l int ch i ld Index ,
f ina l int p layer

)
{

i f ( i t emsL i s t [ p laye r ] [ parentIndex ] == null )
return fa l se ;

return i t emsL i s t [ p laye r ] [ parentIndex ] . get ( ch i ld Index ) ;
}

public int getGroupSize
(

f ina l int parentIndex ,
f ina l int p layer

)
{

i f ( i t emsL i s t [ p laye r ] [ parentIndex ] == null )
return 0 ;

return i t emsL i s t [ p laye r ] [ parentIndex ] . c a r d i n a l i t y ( ) ;
}

}
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A.2 unionFind.java

/∗∗
∗ Main f i l e to c r ea t e Union t r e e
∗
∗ @author tahmina
∗
∗/

public class UnionFind implements S e r i a l i z a b l e
{

/∗∗
∗ @param s i t e I d The l a s t move o f the game .
∗ @param s t a t e Each s t a t e in format ion .
∗ @param uf The o b j e c t o f the union−f i n d .
∗ @param whoSi teId Player type o f l a s t move .
∗ @param numPlayers The number o f p l a y e r s .
∗ @param neighbourLis The ad jacen t l i s t o f our l a s t movement .
∗
∗ Remarks None .
∗
∗/

private stat ic void union
(

f ina l int s i t e I d ,
f ina l Conta inerState s tate ,
f ina l UnionInfo uf ,
f ina l int whoSiteId ,
f ina l int numPlayers ,
f ina l List<Vertex> ne ighbourL i s t

)
{

f ina l int numNeighbours = ne ighbourL i s t . s i z e ( ) ;

u f . set I tem ( s i t e I d , s i t e I d , whoSiteId ) ;
uf . s e tParent ( s i t e I d , s i t e I d , whoSiteId ) ;

for ( int i = 0 ; i < numNeighbours ; i++)
{

f ina l int ni = ne ighbourL i s t . get ( i ) . index ( ) ;
boolean connect = true ;

i f
(

( ( whoSiteId == numPlayers + 1) && ( s t a t e . who ( n i ) != 0) ) | |

( ( whoSiteId != numPlayers + 1) && ( s t a t e . who ( n i ) == whoSiteId ) )
)
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{
for ( int j = i + 1 ; j < numNeighbours ; j++)
{

f ina l int nj = ne ighbourL i s t . get ( j ) . index ( ) ;

i f ( connected ( ni , nj , uf , whoSiteId ) )
{

connect = fa l se ;
break ;

}
}

i f ( connect )
{

f ina l int rootP = f i n d ( ni , uf , whoSiteId ) ;
f ina l int rootQ = f i n d ( s i t e I d , uf , whoSiteId ) ;

i f ( rootP == rootQ )
return ;

i f ( uf . getGroupSize ( rootP , whoSiteId )
< uf . getGroupSize ( rootQ , whoSiteId ) )

{
uf . se tParent ( rootP , rootQ , whoSiteId ) ;
uf . mergeItemsLists ( rootQ , rootP , whoSiteId ) ;

}
else
{

uf . se tParent ( rootQ , rootP , whoSiteId ) ;
uf . mergeItemsLists ( rootP , rootQ , whoSiteId ) ;

}
}

}
}

}
}
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A.3 find.java

/∗∗
∗
∗ @param po s i t i o n A c e l l number .
∗ @param uf Object o f union−f i n d .
∗ @param whoSi teId The curren t p l aye r type .
∗
∗ @return The roo t o f the p o s i t i o n .
∗/
private stat ic int f i n d
(

f ina l int pos i t i on ,
f ina l UnionInfo uf ,
f ina l int whoSiteId

)
{

f ina l int parent = uf . getParent ( po s i t i on , whoSiteId ) ;

i f ( parent == p o s i t i o n )
return p o s i t i o n ;

else
return f i n d ( uf . getParent ( parent , whoSiteId ) , uf , whoSiteId ) ;

}
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A.4 connect.java

/∗∗
∗
∗ @param po s i t i on1 In t e g e r p o s i t i o n .
∗ @param po s i t i on2 In t e g e r p o s i t i o n .
∗ @param uf Object o f union−f i n d .
∗ @param whoSi teId The curren t p l aye r type .
∗
∗ @return check Are the po s i t i on1 and po s i t i on1

in the same union t r e e or not ?
∗/

private stat ic boolean connected
(

f ina l int pos i t i on1 ,
f ina l int pos i t i on2 ,
f ina l UnionInfo uf ,
f ina l int whoSiteId

)
{

f ina l int root1 = f i n d ( pos i t i on1 , uf , whoSiteId ) ;
return uf . isSameGroup ( root1 , po s i t i on2 , whoSiteId ) ;

}
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Appendix B Framework-B

B.1 unionInfoD.java

package u t i l ;

import java . i o . S e r i a l i z a b l e ;
import java . u t i l . Arrays ;
import java . u t i l . B i tSet ;

/∗∗
∗ Contains a l l the i n f o / s t o r a g e s f o r the Union−f ind−d e l e t e .
∗
∗ @author tahmina
∗
∗
∗/

public class UnionInfoD implements S e r i a l i z a b l e
{

private stat ic f ina l long se r ia lVers ionUID = 1L ;
private stat ic int Unused = −1;

protected int [ ] [ ] parent ;
protected BitSet [ ] [ ] i t emsL i s t ;
protected BitSet [ ] [ ] itemWithOrthoNeighbors ;
public int t o t a l s i z e ;

/∗∗
∗ Constructor
∗ @param t o t a l v e r t i c e s The s i z e o f the game board .
∗ @param numberOfPlayers The t o t a l number o f p l a y e r s .
∗/

public UnionInfoD ( f ina l int t o t a l V e r t i c e s , f ina l int numberOfPlayers )
{

parent = new int [ numberOfPlayers + 2 ] [ ] ;
i t emsL i s t = new BitSet [ numberOfPlayers + 2 ] [ ] ;
itemWithOrthoNeighbors = new BitSet [ numberOfPlayers + 2 ] [ ] ;
t o t a l s i z e = t o t a l V e r t i c e s ;

for ( int i = 1 ; i <= numberOfPlayers + 1 ; i++)
{

parent [ i ] = new int [ t o t a l V e r t i c e s ] ;
i t emsL i s t [ i ] = new BitSet [ t o t a l V e r t i c e s ] ;
itemWithOrthoNeighbors [ i ] = new BitSet [ t o t a l V e r t i c e s ] ;

for ( int j = 0 ; j < t o t a l V e r t i c e s ; j++)
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{
parent [ i ] [ j ] = Unused ;
i t emsL i s t [ i ] [ j ] = null ;
itemWithOrthoNeighbors [ i ] [ j ] = null ;

}
}

}

public void setParent
(

f ina l int ch i ld Index ,
f ina l int parentIndex ,
f ina l int p layer

)
{

parent [ p laye r ] [ ch i ld Index ] = parentIndex ;
}

public void c l ea rParent
(

f ina l int ch i ld Index ,
f ina l int p layer

)
{

parent [ p laye r ] [ ch i ld Index ] = Unused ;
}

public int getParent
(

f ina l int ch i ld Index ,
f ina l int p layer

)
{

return parent [ p laye r ] [ ch i ld Index ] ;
}

public BitSet ge t I t emsL i s t
(

f ina l int parentIndex ,
f ina l int p layer

)
{

i f ( i t emsL i s t [ p laye r ] [ parentIndex ] == null )
{

i t emsL i s t [ p laye r ] [ parentIndex ] = new BitSet ( t o t a l s i z e ) ;
}

60



return i t emsL i s t [ p laye r ] [ parentIndex ] ;
}

public void c l e a r I t e m s L i s t
(

f ina l int parentIndex ,
f ina l int p layer

)
{

i t emsL i s t [ p laye r ] [ parentIndex ] . c l e a r ( ) ;
}

public boolean isSameGroup
(

f ina l int parentIndex ,
f ina l int ch i ld Index ,
f ina l int p layer

)
{

i f ( i t emsL i s t [ p laye r ] [ parentIndex ] == null )
return fa l se ;

return i t emsL i s t [ p laye r ] [ parentIndex ] . get ( ch i ld Index ) ;
}

public void set I tem
(

f ina l int parentIndex ,
f ina l int ch i ld Index ,
f ina l int p layer

)
{

i f ( i t emsL i s t [ p laye r ] [ parentIndex ] == null )
{

i t emsL i s t [ p laye r ] [ parentIndex ] = new BitSet ( t o t a l s i z e ) ;
}

i t emsL i s t [ p laye r ] [ parentIndex ] . s e t ( ch i ld Index ) ;
}

public void mergeItemsLists
(

f ina l int parentIndex1 ,
f ina l int parentIndex2 ,
f ina l int p layer

)
{
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i t emsL i s t [ p laye r ] [ parentIndex1 ]
. or ( i t emsL i s t [ p laye r ] [ parentIndex2 ] ) ;

i t emsL i s t [ p laye r ] [ parentIndex2 ] . c l e a r ( ) ;
}

public int getGroupSize
(

f ina l int parentIndex ,
f ina l int p layer

)
{

i f ( i t emsL i s t [ p laye r ] [ parentIndex ] == null )
return 0 ;

return i t emsL i s t [ p laye r ] [ parentIndex ] . c a r d i n a l i t y ( ) ;
}

public BitSet getAllItemWithOrthoNeighbors
(

f ina l int parentIndex ,
f ina l int p layer

)
{

i f ( itemWithOrthoNeighbors [ p laye r ] [ parentIndex ] == null )
{

itemWithOrthoNeighbors [ p laye r ] [ parentIndex ]
= new BitSet ( t o t a l s i z e ) ;

}
return itemWithOrthoNeighbors [ p laye r ] [ parentIndex ] ;

}

public void c learAl l i temWithOrthoNeighbors
(

f ina l int parentIndex ,
f ina l int p layer

)
{

itemWithOrthoNeighbors [ p laye r ] [ parentIndex ] . c l e a r ( ) ;
}

public void setItemWithOrthoNeighbors
(

f ina l int parentIndex ,
f ina l int ch i ld Index ,
f ina l int p layer

)
{

i f ( itemWithOrthoNeighbors [ p laye r ] [ parentIndex ] == null )
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{
itemWithOrthoNeighbors [ p laye r ] [ parentIndex ]

= new BitSet ( t o t a l s i z e ) ;
}
itemWithOrthoNeighbors [ p laye r ] [ parentIndex ]

. s e t ( ch i ld Index ) ;
}

public void mergeItemWithOrthoNeighbors
(

f ina l int parentIndex1 ,
f ina l int parentIndex2 ,
f ina l int p layer

)
{

itemWithOrthoNeighbors [ p laye r ] [ parentIndex1 ]
. or ( itemWithOrthoNeighbors [ p laye r ] [ parentIndex2 ] ) ;

itemWithOrthoNeighbors [ p laye r ] [ parentIndex2 ] . c l e a r ( ) ;
}

}
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B.2 deletion.java

/∗∗
∗
∗ @param con tex t The curren t Context o f the game board .
∗ @param d e l e t e I d d e l e t e I d , which we want to d e l e t e from the union t r e e .
∗/

public stat ic void d e l e t i o n
(

f ina l Context context ,
f ina l int de l e t e Id ,
f ina l boolean enemy ,
f ina l boolean groupDelete

)
{

f ina l Graph graph = context . graph ( ) ;
f ina l int c id = context . con ta ine r Id ( ) [ d e l e t e I d ] ;
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ c id ] ;
int d e l e t e P l a y e r = s t a t e . who( d e l e t e I d ) ;

i f ( ! groupDelete )
{
i f ( enemy)
{

d e l e t e P l a y e r = context . s t a t e ( ) . next ( ) ;
}

f ina l int de le te IdRoot = f i n d ( de l e t e Id , s t a t e . unionInfoD ( ) [ d e l e t e P l a y e r ]
, d e l e t e P l a y e r ) ;

f ina l BitSet b i t s e t s D e l e t e P l a y e r = ( BitSet ) s t a t e . unionInfoD ( )
[ d e l e t e P l a y e r ] . g e t I t emsL i s t ( de leteIdRoot , d e l e t e P l a y e r ) . c l one ( ) ;

for ( int i = b i t s e t s D e l e t e P l a y e r . nextSetBit ( 0 ) ;
i >= 0 ; i = b i t s e t s D e l e t e P l a y e r . nextSetBit ( i + 1) )

{
s t a t e . unionInfoD ( ) [ d e l e t e P l a y e r ] . c l ea rParent ( i , d e l e t e P l a y e r ) ;
s t a t e . unionInfoD ( ) [ d e l e t e P l a y e r ] . c l e a r I t e m s L i s t ( i , d e l e t e P l a y e r ) ;
s t a t e . unionInfoD ( ) [ d e l e t e P l a y e r ] . c learAl l i temWithOrthoNeighbors

( i , d e l e t e P l a y e r ) ;
}

b i t s e t s D e l e t e P l a y e r . c l e a r ( d e l e t e I d ) ;

for ( int i = b i t s e t s D e l e t e P l a y e r . nextSetBit ( 0 ) ;
i >= 0 ; i = b i t s e t s D e l e t e P l a y e r . nextSetBit ( i + 1) )

{
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f ina l TIntArrayList nL i s t ;

i f (GameType . OrthogonalDelet ionOnly ) != 0L)
{

nLi s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( ) . get ( i ) . o r thogona l ( ) ) ;
}
else
{

nLi s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( ) . get ( i ) . ad jacent ( ) ) ;
}

f ina l int nListSz = nLi s t . s i z e ( ) ;
f ina l TIntArrayList ne ighbourL i s t = new TIntArrayList ( nLis tSz ) ;

for ( int j = 0 ; j < nListSz ; j++)
{

f ina l int ni = nLi s t . getQuick ( j ) ;
i f ( s t a t e . who( n i ) == d e l e t e P l a y e r )
{

ne ighbourL i s t . add ( n i ) ;
}

}
union ( i , ne ighbourLis t , s t a t e . unionInfoD ( ) [ d e l e t e P l a y e r ] ,

d e l e t e P l a y e r ) ;
}

f ina l int cPlayer = context . game ( ) . p l a ye r s ( ) . count ( ) + 1 ;
f ina l int delRootcPlayer = f i n d ( de l e t e Id , s t a t e . unionInfoD ( )

[ cPlayer ] , cPlayer ) ;
f ina l BitSet i temsListDPlayer = ( BitSet ) s t a t e . unionInfoD ( )

[ cPlayer ] . g e t I t emsL i s t ( delRootcPlayer , cPlayer ) . c l one ( ) ;

for ( int i = itemsListDPlayer . nextSetBit ( 0 ) ;
i >= 0 ; i = itemsListDPlayer . nextSetBit ( i + 1) )

{
s t a t e . unionInfoD ( ) [ cPlayer ] . c l ea rParent ( i , cPlayer ) ;
s t a t e . unionInfoD ( ) [ cPlayer ] . c l e a r I t e m s L i s t ( i , cPlayer ) ;
s t a t e . unionInfoD ( ) [ cPlayer ] . c learAl l i temWithOrthoNeighbors

( i , cPlayer ) ;
}
i t emsListDPlayer . c l e a r ( d e l e t e I d ) ;

for ( int i = itemsListDPlayer . nextSetBit ( 0 ) ; i >= 0 ;
i = itemsListDPlayer . nextSetBit ( i + 1) )

{
f ina l TIntArrayList nL i s t ;
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i f (GameType . OrthogonalDelet ionOnly ) != 0L)
{

nLi s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( ) . get ( i ) . or thogona l ( ) ) ;
}
else
{

nLi s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( ) . get ( i ) . ad jacent ( ) ) ;
}

f ina l int nListSz = nLi s t . s i z e ( ) ;
f ina l TIntArrayList ne ighbourL i s t = new TIntArrayList ( nLis tSz ) ;

for ( int j = 0 ; j < nListSz ; j++)
{

f ina l int ni = nLi s t . getQuick ( j ) ;
i f ( s t a t e . who( n i ) != 0)
{

ne ighbourL i s t . add ( n i ) ;
}

}

unioncPlayer ( i , ne ighbourList , s t a t e . unionInfoD ( ) [ cPlayer ] , cPlayer ) ;
}

}
else
{

f ina l int de leteGPlayer = context . s t a t e ( ) . next ( ) ;
f ina l int de le te IdRoot = f i n d ( de l e t e Id , s t a t e . unionInfoD ( )

[ de leteGPlayer ] , de leteGPlayer ) ;
f ina l BitSet i t emsL i s t= ( BitSet ) s t a t e . unionInfoD ( ) [ de leteGPlayer ]

. g e t I t emsL i s t ( de leteIdRoot , de leteGPlayer ) . c l one ( ) ;

for ( int i = i t emsL i s t . nextSetBit ( 0 ) ; i >= 0 ;
i = i t emsL i s t . nextSetBit ( i + 1) )

{
s t a t e . unionInfoD ( ) [ de leteGPlayer ] . c l ea rParent ( i , de leteGPlayer ) ;
s t a t e . unionInfoD ( ) [ de leteGPlayer ] . c l e a r I t e m s L i s t ( i , de leteGPlayer ) ;
s t a t e . unionInfoD ( ) [ de leteGPlayer ] . c learAl l i temWithOrthoNeighbors

( i , de leteGPlayer ) ;
}

f ina l int commomPlayer = context . game ( ) . p l a ye r s ( ) . count ( ) + 1 ;
f ina l int delRootcPlayer = f i n d ( de l e t e Id , s t a t e . unionInfoD ( )

[ commomPlayer ] , commomPlayer ) ;
f ina l BitSet i t emsL i s t cP laye r = ( BitSet ) s t a t e . unionInfoD ( ) [ commomPlayer ]

. g e t I t emsL i s t ( delRootcPlayer , commomPlayer ) . c l one ( ) ;
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for ( int i = i t emsL i s t cP laye r . nextSetBit ( 0 ) ; i >= 0
; i = i t emsL i s t cP laye r . nextSetBit ( i + 1) )

{
s t a t e . unionInfoD ( ) [ commomPlayer ] . c l ea rParent ( i , commomPlayer ) ;
s t a t e . unionInfoD ( ) [ commomPlayer ] . c l e a r I t e m s L i s t ( i , commomPlayer ) ;
s t a t e . unionInfoD ( ) [ commomPlayer ] . c learAl l i temWithOrthoNeighbors

( i , commomPlayer ) ;
}

i t emsL i s t cP laye r . xor ( i t emsL i s t ) ;

for ( int i = i t emsL i s t cP laye r . nextSetBit ( 0 ) ;
i >= 0 ; i = i t emsL i s t cP laye r . nextSetBit ( i + 1) )

{
f ina l TIntArrayList nL i s t ;

i f ( ( GameType . OrthogonalDelet ionOnly ) != 0L)
{

nLi s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( ) . get ( i ) . o r thogona l ( ) ) ;
}
else
{

nLi s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( ) . get ( i ) . ad jacent ( ) ) ;
}

f ina l int nListSz = nLi s t . s i z e ( ) ;
f ina l TIntArrayList ne ighbourL i s t = new TIntArrayList ( nLis tSz ) ;

for ( int j = 0 ; j < nListSz ; j++)
{

f ina l int ni = nLi s t . getQuick ( j ) ;
i f ( s t a t e . who( n i ) != 0)
{

ne ighbourL i s t . add ( n i ) ;
}

}

unioncPlayer ( i , ne ighbourList , s t a t e . unionInfoD ( ) [ commomPlayer ] ,
commomPlayer ) ;

}
}

}
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B.3 find.java

/∗∗
∗
∗ @param po s i t i o n A c e l l number .
∗ @param uf Object o f union−f i n d .
∗ @param whoSi teId The curren t p l aye r type .
∗
∗ @return The roo t o f the p o s i t i o n .
∗/

private stat ic int f i n d
(

f ina l int pos i t i on ,
f ina l UnionInfoD uf ,
f ina l int whoSiteId

)
{

f ina l int parentId = uf . getParent ( po s i t i on , whoSiteId ) ;

i f ( parentId == Unused )
return p o s i t i o n ;

i f ( parentId == p o s i t i o n )
return p o s i t i o n ;

else
return f i n d ( uf . getParent ( parentId , whoSiteId ) , uf , whoSiteId ) ;

}
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B.4 connect.java

/∗∗
∗
∗ @param po s i t i on1 In t e g e r p o s i t i o n .
∗ @param po s i t i on2 In t e g e r p o s i t i o n .
∗ @param uf Object o f union−f i n d .
∗ @param whoSi teId The curren t p l aye r type .
∗
∗ @return check Are the po s i t i on1 and po s i t i on1

in the same union t r e e or not ?
∗/

private stat ic boolean connected
(

f ina l int pos i t i on1 ,
f ina l int pos i t i on2 ,
f ina l UnionInfoD uf ,
f ina l int whoSiteId

)
{

f ina l int root1 = f i n d ( pos i t i on1 , uf , whoSiteId ) ;
return uf . isSameGroup ( root1 , po s i t i on2 , whoSiteId ) ;

}
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Appendix C Games Algorithms/ Ludemes

C.1 isConnect

/∗∗
∗ Connect wi th union−f i n d
∗
∗ @author tahmina
∗
∗/

public f ina l class IsConnect extends BaseBooleanFunction
{

private f ina l RegionFunction [ ] reg ionArray ;

private f ina l IndexOf roleFunc ;

private List<BitSet []> precomputedRegionsBitSets = null ;

private f ina l Regions r e g i o n s ;

private int number ;

/∗∗
∗ Constructor .
∗ @param number The minimum number o f s e t need to connect .
∗ @param reg ions The d i s j o i n t r eg i ons se t , which use f o r connect ion .
∗ @param ro l e Type o f p l aye r ( i . e . , b l a c k or whi te ) .
∗ @param regionType Type o f the reg i ons .
∗
∗/

public IsConnect
(

@Opt f ina l I n t e g e r number ,
@Or f ina l RegionFunction [ ] r eg ions ,
@Or f ina l RoleType ro l e ,
@Or f ina l RegionTypeStatic regionType

)
{

this . number = ( number == null ) ? 0 : number . intValue ( ) ;
this . reg ionArray = r e g i o n s ;
ro leFunc = ( r o l e == null ) ? null : new IndexOf ( r o l e ) ;
this . r e g i o n s = ( regionType == null ) ? null
: new game . equipment . other . Regions (null , null , null , null ,

null , regionType , null , null ) ;
}
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/∗∗
∗ @param con tex t The current Context o f the game board .
∗
∗ In t h i s a lgor i thm , f i r s t we make an union t r e e wi th the l a s t move .
∗ check : I s the l a s t move make a s p e c i f i c number o f connect ion or not ?
∗
∗/

@Override
public boolean eva l ( f ina l Context context )
{

f ina l int s i t e I d = context . t r i a l ( ) . lastMove ( ) . getTo ( ) ;
f ina l boolean unionFlag = context . unionFindCal led ( ) ;
f ina l boolean unionDeleteFlag = context . unionFindDeleteCal led ( ) ;

i f ( context . game ( ) . i sUnionFindDelete ( ) )
{

i f ( ! unionDeleteFlag )
{

UnionFindD . eva l ( context , s i t e I d ) ;
}

}
else
{

i f ( ! unionFlag )
{

UnionFind . eva l ( context , false , Abso luteDi rec t i on
. All , Constants .UNDEFINED) ;

}
}
f ina l int parentOfS i t e id ;

i f ( context . game ( ) . i sUnionFindDelete ( ) )
{

parentOfS i t e id=f i n d ( s i t e I d , s t a t e . unionInfoD ( ) [ whoSiteId ] , whoSiteId ) ;
}
else
{

parentOfS i t e id=f i n d ( s i t e I d , s t a t e . un ionIn fo ( ) [ whoSiteId ] , whoSiteId ) ;
}

int connect ion = 0 ;
f ina l int numberOfRegions = s i t e s n . s i z e ( ) ;

i f ( number == 0)
{

number = numberOfRegions ;
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}

i f ( context . game ( ) . i sUnionFindDelete ( ) )
{

for ( int i = 0 ; i < numberOfRegions ; i++)
{

i f ( r e g i o n s B i t S e t s [ i ] . i n t e r s e c t s ( s t a t e . unionInfoD ( )
[ whoSiteId ] . g e t I t emsL i s t ( parentOfS i te id , whoSiteId ) ) )

connect ion++;

i f ( connect ion == number )
{

return true ;
}

}
}
else
{

for ( int i = 0 ; i < numberOfRegions ; i++)
{

i f ( r e g i o n s B i t S e t s [ i ] . i n t e r s e c t s ( s t a t e . un ionIn fo ( )
[ whoSiteId ] . g e t I t emsL i s t ( parentOfS i te id , whoSiteId ) ) )

connect ion++;

i f ( connect ion == number )
{

return true ;
}

}
}
return fa l se ;

}
}
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C.2 isLoopAux

/∗∗
∗Helping f i l e o f the isLoop
∗
∗ @author tahmina
∗
∗/

public f ina l class IsLoopAux extends BaseBooleanFunction
{

private stat ic f ina l long se r ia lVers ionUID = 1L ;

/∗∗ Direc t ion chosen . ∗/
private f ina l Abso luteDi rec t i on dirnChoice ;

public IsLoopAux
(

@Opt f ina l Abso luteDi rec t i on dirnChoice
)
{

this . d i rnChoice=(dirnChoice == null )
? Abso luteDi rec t i on . Al l : d i rnChoice ;

}

/∗∗

∗ @return Are the ne ighbor ’ s p o s i t i o n o f the l a s t move
∗ i s s u f f i c i e n t to c r ea t e an Open loop ?
∗
∗/

@Override
public boolean eva l ( f ina l Context context )
{
f ina l int s i t e I d = context . t r i a l ( ) . lastMove ( ) . getTo ( ) ;
i f ( s i t e I d == Constants .UNDEFINED)

return fa l se ;

f ina l Graph graph = context . graph ( ) ;
f ina l int c id = context . con ta ine r Id ( ) [ s i t e I d ] ;
f ina l Conta inerState s t a t e = context . s t a t e ( )

. c o n t a i n e r S t a t e s ( ) [ c id ] ;
f ina l int whoSiteId = s t a t e . who( s i t e I d ) ;

L i s t<Vertex> ne ighbourL i s t = new ArrayList<Vertex >() ;

i f ( d i rnChoice == Abso luteDi rec t i on . Al l )
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{
ne ighbourL i s t = graph . v e r t i c e s ( ) . get ( s i t e I d ) . ad jacent ( ) ;
return loop ( s i t e I d , graph , s ta te , ne ighbourLis t ,

s t a t e . un ionIn fo ( ) [ whoSiteId ] ) ;
}
else
{

List<Vertex> o r thoL i s t = graph . v e r t i c e s ( ) . get ( s i t e I d ) . or thogona l ( ) ;
int count = 0 ;

for ( int i = 0 ; i<o r thoL i s t . s i z e ( ) ; i++)
{

f ina l int o i = or thoL i s t . get ( i ) . index ( ) ;
i f ( s t a t e . who( o i ) == whoSiteId )
{

count++;
}

}

i f ( count > 1)
{

ne ighbourL i s t = graph . v e r t i c e s ( ) . get ( s i t e I d ) . ad jacent ( ) ;
return loopOrtho ( s i t e I d , graph , s ta te , ne ighbourList ,

s t a t e . un ionIn fo ( ) [ whoSiteId ] ) ;
}
else

return fa l se ;
}

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗ @param s i t e I d The l a s t move o f the curren t game s t a t e .
∗ @param graph The graph o f the pre sen t game board .
∗ @param s t a t e The pre sen t s t a t e o f the game board .
∗ @param ne i ghbourL i s t The ad jacen t l i s t o f the l a s t move .
∗ @param uf The o b j e c t o f the union−f i n d .
∗
∗
∗ @return I s i t l oop or not ?
∗/
private stat ic boolean loop
(

f ina l int s i t e I d ,
f ina l Graph graph ,
f ina l Conta inerState s tate ,
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f ina l List<Vertex> ne ighbourList ,
f ina l UnionInfo uf

)
{
f ina l int whoSiteId = s t a t e . who( s i t e I d ) ;
f ina l int numNeighbours = ne ighbourL i s t . s i z e ( ) ;
f ina l int [ ] l o ca lPa r en t = new int [ numNeighbours ] ;
int adjacentSetsNumber = 0 ;

Arrays . f i l l ( l oca lParent , −1);
// use f o r the temporary union t r e e

List<Vertex> kL i s t ;
L i s t<Vertex> i n t e r S e c t i o n L i s t ;

for ( int i = 0 ; i < numNeighbours ; i++)
{

f ina l int ni = ne ighbourL i s t . get ( i ) . index ( ) ;
i f ( s t a t e . who( n i ) == whoSiteId )
{

i f ( l o ca lPa r en t [ i ] == −1)
{

l o ca lPa r en t [ i ] = i ;
}

kL i s t = graph . v e r t i c e s ( ) . get ( n i ) . ad jacent ( ) ;

i n t e r S e c t i o n L i s t = i n t e r S e c t i o n ( ne ighbourLis t , kL i s t ) ;

for ( int j = 0 ; j < i n t e r S e c t i o n L i s t . s i z e ( ) ; j++)
{
f ina l int nj = i n t e r S e c t i o n L i s t . get ( j ) . index ( ) ;

i f ( ( s t a t e . who ( nj ) == whoSiteId ) && ( ni != s i t e I d ) )
{

for ( int m = 0 ; m < numNeighbours ; m++)
{

i f ( (m != i ) && ( nj == ne ighbourL i s t . get (m) . index ( ) ) )
{

i f ( l o ca lPa r en t [m] == −1)
{

l o ca lPa r en t [m] = i ;
break ;

}
else
{
int mRoot = m;
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int iRoot = i ;
while (mRoot != loca lPa r en t [ mRoot ] )

mRoot = loca lPa r en t [ mRoot ] ;
while ( iRoot != lo ca lPa r en t [ iRoot ] )

iRoot = loca lPa r en t [ iRoot ] ;

l o ca lPa r en t [ iRoot ] = lo ca lPa r en t [ mRoot ] ;
break ;

}
}

}
}
}
}
}

for ( int k = 0 ; k < numNeighbours ; k++)
{
i f ( l o ca lPa r en t [ k ] == k )
{

adjacentSetsNumber++;
}
}
i f ( adjacentSetsNumber > 1) // i f the number s e t s o f adjacency l i s t more than one , on ly then i t i s r e qu i r ed to check the open−r ing
{
for ( int i = 0 ; i < numNeighbours ; i++)
{
i f ( l o ca lPa r en t [ i ] == i )
{

f ina l int r o o t I=f i n d ( ne ighbourL i s t . get ( i )
. index ( ) , uf , whoSiteId ) ;

for ( int j = i + 1 ; j < numNeighbours ; j++)
{
i f ( l o ca lPa r en t [ j ] == j )
{

i f ( uf . isSameGroup ( root I , ne ighbourL i s t . get ( j )
. index ( ) , whoSiteId ) )

{
return true ;

}
}

}
}
}
}
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return fa l se ;
}

/∗∗
∗ @param s i t e I d The l a s t move o f the curren t game s t a t e .
∗ @param graph The graph o f the pre sen t game board .
∗ @param s t a t e The pre sen t s t a t e o f the game board .
∗ @param ne i ghbourL i s t The ad jacen t l i s t o f the l a s t move .
∗ @param uf The o b j e c t o f the union−f i n d .
∗
∗
∗ @return I s i t l oop or not ?

p r i v a t e s t a t i c boo lean loopOrtho
(

f i n a l i n t s i t e I d ,
f i n a l Graph graph ,
f i n a l Conta inerSta te s t a t e ,
f i n a l L is t<Vertex> ne ighbourLi s t ,
f i n a l UnionInfo uf

)
{

f i n a l i n t whoSi teId = s t a t e . who( s i t e I d ) ;
f i n a l i n t numNeighbours= ne i ghbourL i s t . s i z e ( ) ;
f i n a l i n t [ ] l o ca lParen t= new in t [ numNeighbours ] ;
i n t adjacentSetsNumber = 0;

Arrays . f i l l ( l oca lParent , −1);
// use f o r the temporary union t r e e

Lis t<Vertex> kL i s t ;
L i s t<Vertex> i n t e r S e c t i o nL i s t ;
L i s t<Vertex> o rL i s t = graph . v e r t i c e s ( )

. g e t ( s i t e I d ) . or thogona l ( ) ;

f o r ( i n t i = 0 ; i < numNeighbours ; i++)
{
f i n a l i n t ni = ne i ghbourL i s t . g e t ( i ) . index ( ) ;
i f ( s t a t e . who( ni ) == whoSi teId )
{
boo lean or thogona lPos i t i on = f a l s e ;
f o r ( i n t k = 0; k < o rL i s t . s i z e ( ) ; k++)
{
f i n a l i n t o i = orL i s t . g e t ( k ) . index ( ) ;

i f ( ni == oi )
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{
or t hogona lPos i t i on = true ;
break ;

}
}
i f ( o r t hogona lPos i t i on )
{

i f ( l o ca lParen t [ i ] == −1)
{

l o ca lParen t [ i ] = i ;
}

kL i s t = graph . v e r t i c e s ( ) . g e t ( ni ) . or thogona l ( ) ;
i n t e r S e c t i o nL i s t = in t e rS e c t i on ( ne ighbourLi s t , kL i s t ) ;

f o r ( i n t j = 0 ; j < i n t e r S e c t i o nL i s t . s i z e ( ) ; j++)
{
f i n a l i n t nj = i n t e r S e c t i o nL i s t . g e t ( j ) . index ( ) ;
i f ( ( s t a t e . who ( nj ) == whoSi teId ) && ( ni != s i t e I d ) )
{
f o r ( i n t m = 0; m < numNeighbours ; m++)
{
i f ( (m != i ) && ( nj == ne i ghbourL i s t . g e t (m) . index ( ) ) )
{
i f ( l o ca lParen t [m] == −1)
{
l o ca lParen t [m] = i ;
break ;
}
e l s e
{
i n t mRoot = m;
i n t iRoot = i ;
wh i l e (mRoot != loca lParen t [mRoot ] )

mRoot = loca lParen t [mRoot ] ;
wh i l e ( iRoot != loca lParen t [ iRoot ] )

iRoot = loca lParen t [ iRoot ] ;
l o ca lParen t [ iRoot ] = loca lParen t [mRoot ] ;
break ;
}
}
}
}
}
}
}
}
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f o r ( i n t k = 0; k < numNeighbours ; k++)
{
i f ( l o ca lParen t [ k ] == k )
{

adjacentSetsNumber++;
}
}

i f ( adjacentSetsNumber > 1) // i f the number s e t s o f adjacency l i s t more than one , on ly then i t i s r e qu i r ed to check the open−r ing
{

f o r ( i n t i = 0 ; i < numNeighbours ; i++)
{
i f ( l o ca lParen t [ i ] == i )
{

f i n a l i n t r oo t I=f i nd ( ne i ghbourL i s t . g e t ( i ) . index ( ) , uf , whoSi teId ) ;

f o r ( i n t j = i + 1; j < numNeighbours ; j++)
{
i f ( l o ca lParen t [ j ] == j )
{
i f ( u f . isSameGroup ( root I , ne i ghbourL i s t . g e t ( j ) . index ( ) , whoSi teId ) )
{
re turn t rue ;
}
}
}
}
}
}
re turn f a l s e ;
}
}

79



C.3 isLoop

/∗∗
∗ Detec t ion o f a loop .
∗
∗ @author tahmina .
∗
∗/

public f ina l class IsLoop extends BaseBooleanFunction
{

/∗∗ a l l t ype s o f r ing ∗/
private f ina l boolean a l l ;

/∗∗ f u l l r ing ∗/
private f ina l boolean f u l l R i n g ;

/∗∗ r ing wi th empty c e l l ∗/
private f ina l boolean empty ;

/∗∗ r ing wi th i n s i d e enemy∗/
private f ina l boolean enemy ;

/∗∗ Direc t ion chosen . ∗/
private f ina l Abso luteDi rec t i on dirnChoice ;

/∗∗
∗ The co lour o f the path .
∗/

private f ina l IntFunct ion colourFn ;

/∗∗
∗ The s t a r t i n g po in t o f the loop .
∗/
private f ina l IntFunct ion startFn ;

/∗∗
∗ The s t a r t i n g po in t s o f the loop .
∗/
private f ina l RegionFunction reg ionStartFn ;

private boolean opponent = fa l se ;
private boolean edgeFound = fa l se ;
private boolean f r e e C e l l = fa l se ;
private boolean emptyCheck ;
private boolean enemyCheck ;
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public IsLoop
(
@Opt @Name f ina l Boolean a l l ,
@Opt @Name f ina l Boolean f u l l ,
@Opt @Name f ina l Boolean empty ,
@Opt @Name f ina l Boolean enemy ,
@Opt f ina l Abso luteDi rec t i on dirnChoice

)
{
this . a l l = ( a l l == null )? fa l se : a l l . booleanValue ( ) ;
this . f u l l R i n g = ( f u l l == null )? fa l se : f u l l . booleanValue ( ) ;
this . empty =(empty == null )? fa l se : empty . booleanValue ( ) ;
this . enemy =(enemy == null )? fa l se : enemy . booleanValue ( ) ;
this . d i rnChoice =(dirnChoice == null )? Abso luteDi rec t i on . Al l : d i rnChoice ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ @param con tex t The current Context o f the game board .
∗ @return I s the l a s t move c rea t e a r ing or not ?
∗/

@Override
public boolean eva l ( f ina l Context context )
{
f ina l int s i t e I d = startFn . eva l ( context ) ;
boolean r i n g f l a g = fa l se ;
f ina l boolean unionFlag = context . unionFindCal led ( ) ;
f ina l boolean de f au l tF l ag =!( a l l | | f u l l R i n g | | empty | | enemy ) ;
emptyCheck = empty ;
enemyCheck = enemy ;
f ina l Graph graph = context . graph ( ) ;
f ina l int c id = context . con ta ine r Id ( ) [ s i t e I d ] ;
f ina l Conta inerState s t a t e = context . s t a t e ( )

. c o n t a i n e r S t a t e s ( ) [ c id ] ;
f ina l int whoId = context . s t a t e ( ) . next ( ) ;
f ina l int t o t a l V e r t i c e s= graph . v e r t i c e s ( ) . s i z e ( ) ;
f ina l int whoSiteId = s t a t e . who( s i t e I d ) ;
f ina l List<Vertex> ne ighbourL i s t = graph . v e r t i c e s ( )

. get ( s i t e I d ) . ad jacent ( ) ;
f ina l int whatSideId = s t a t e . what ( s i t e I d ) ;
f ina l int numNeighbourSize= ne ighbourL i s t . s i z e ( ) ;

i f ( ! unionFlag )
{

r i n g f l a g = UnionFind . eva l ( context , true ,
d irnChoice , Constants .UNDEFINED) ;
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}

i f ( ( de f au l tF l ag | | a l l ) && ( r i n g f l a g ) )
{
return true ;
}

i f ( ! ( emptyCheck | | enemyCheck ) )
{

i f ( d i rnChoice == Abso luteDi rec t i on . Al l )
{
i f ( ! f u l l R i n g )
{
for ( int i = 0 ; i < numNeighbourSize ; i++)
{

f ina l int ni = ne ighbourL i s t . get ( i ) . index ( ) ;
f ina l int t r iVa lue = graph . v e r t i c e s ( ) . get ( n i )

. maxOrtho ( ) ;

i f ( t r iVa lue == 3)
{
f ina l List<Vertex> nLi s t = graph . v e r t i c e s ( )

. get ( n i ) . or thogona l ( ) ;
f ina l int n L i s t S i z e = nLi s t . s i z e ( ) ;
int count = 0 ;

for ( int j = 0 ; j < n L i s t S i z e ; j++)
{
f ina l int nj = nLi s t . get ( j ) . index ( ) ;
i f ( s t a t e . who( nj ) == whoSiteId )
{

count++;
i f ( count == tr iVa lue )
{

return true ;
}

}
}

}
}

}
}
}

i f ( emptyCheck )
{
i f ( d i rnChoice == Abso luteDi rec t i on . Al l )
{
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for ( int i = 0 ; i < numNeighbourSize ; i++)
{
f ina l int ni = ne ighbourL i s t . get ( i ) . index ( ) ;
f ina l int t r iVa lue = graph . v e r t i c e s ( ) . get ( n i ) . maxOrtho ( ) ;

i f ( t r iVa lue == 3)
{
f ina l List<Vertex> nLi s t = graph . v e r t i c e s ( )

. get ( n i ) . or thogona l ( )
f ina l int n L i s t S i z e = nLi s t . s i z e ( ) ;
int count = 0 ;
i f ( s t a t e . who( n i ) == 0)
{
for ( int j = 0 ; j < n L i s t S i z e ; j++)
{

f ina l int nj = nLi s t . get ( j ) . index ( ) ;
i f ( s t a t e . who( nj ) == whoSiteId )
{

count++;
i f ( count == tr iVa lue )
{

return true ;
}

}
}

}
}
}
}

}

i f ( enemyCheck )
{

i f ( d i rnChoice == Abso luteDi rec t i on . Al l )
{
for ( int i = 0 ; i < numNeighbourSize ; i++)
{

f ina l int ni = ne ighbourL i s t . get ( i ) . index ( ) ;
f ina l int t r iVa lue = graph . v e r t i c e s ( ) . get ( n i ) . maxOrtho ( ) ;
i f ( t r iVa lue == 3)
{
f ina l List<Vertex> nLi s t = graph . v e r t i c e s ( )

. get ( n i ) . or thogona l ( ) ;
f ina l int n L i s t S i z e = nLi s t . s i z e ( ) ;
int count = 0 ;

i f ( ( s t a t e . who( n i ) != 0)&&( s t a t e . who( n i ) != whoSiteId ) )
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{
for ( int j = 0 ; j < n L i s t S i z e ; j++)
{

f ina l int nj = nLi s t . get ( j ) . index ( ) ;
i f ( s t a t e . who( nj ) == whoSiteId )
{

count++;
i f ( count == tr iVa lue )
{

return true ;
}
}
}
}

}
}

}
}

f ina l int [ ] dfsMarked = new int [ t o t a l V e r t i c e s ] ;
f ina l int [ ] d f sParent = new int [ t o t a l V e r t i c e s ] ;
f ina l int [ ] d f sColour = new int [ t o t a l V e r t i c e s ] ;

return l oopWithEnci rc le ( s i t e I d , graph , s ta te , whoId , r i n g f l a g ,
de fau l tF lag , s t a t e . un ionIn fo ( ) [ whoSiteId ] , ne ighbourLis t ,
dfsMarked , dfsParent , d f sColour ) ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗ @param s i t e I d The l a s t move o f the curren t game s t a t e .
∗ @param graph The graph o f the pre sen t game board .
∗ @param s t a t e The pre sen t s t a t e o f the game board .
∗ @param whoId The opponent p l aye r type o f the l a s t move .
∗ @param r ingF lag The f l a g o f the r ing from the isLoop . java .
∗ @param de f a u l tF l a g The f l a g s e t f o r the d e f a u l t va lue ;
∗ @param a l l The f l a g o f to check the a l l t ype s o f r i n g s .
∗ @param f u l lR i n g The f l a g o f to check the f u l l r ing .
∗ @param en c i r c l e The f l a g o f to check enemy p i ece i n s i d e the loop .
∗ @param emptyCheck The f l a g o f to check at l e a s t one empty c e l l

i n s i d e the loop .
∗ @param uf The o b j e c t o f the union−f i n d .
∗ @param ne i ghbourL i s t The l i s t o f ne ighbor v e r t i c e s
∗ @param dfsMarked use to v i s i t e d v e r t i c e s in d f s .
∗ @param dfsParent use to s t o r e i n f o f o r parent v e r t i c e s in d f s .
∗ @param df sCo lor use to s t o r e i n f o f o r c y c l e in d f s .
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∗
∗ @return I s i t d e s i r e Loop or not ?
∗
∗/
private boolean l oopWithEnci rc le
(
f ina l int s i t e I d ,
f ina l Graph graph ,
f ina l Conta inerState s tate ,
f ina l int whoId ,
f ina l boolean r i n g f l a g ,
f ina l boolean de fau l tF lag ,
f ina l UnionInfo uf ,
f ina l List<Vertex> ne ighbourList ,
f ina l int [ ] dfsMarked ,
f ina l int [ ] dfsParent ,
f ina l int [ ] d f sColour
)
{
f ina l int whoSiteId = s t a t e . who( s i t e I d ) ;
f ina l int numNeighbours = ne ighbourL i s t . s i z e ( ) ;
f ina l int [ ] l o c a l p a r e n t = new int [ numNeighbours ] ;
int adjacentSetsnumber = 0 ;
Lis t<Vertex> kL i s t ;

f ina l int parentOfS i t e Id = f i n d ( s i t e I d , uf , whoSiteId ) ;
f ina l int maximumBoardLessRadius = uf . getGroupSize

( parentOfS i te Id , whoSiteId ) ;
f ina l int d f s I t r = maximumBoardLessRadius ∗ 2 ;

Arrays . f i l l ( l o ca lpa r en t , −1);
L i s t<Vertex> k l i s t ;
L i s t<Vertex> i n t e r s e c t i o n l i s t ;

for ( int i = 0 ; i < numNeighbours ; i++)
{

f ina l int ni = ne ighbourL i s t . get ( i ) . index ( ) ;
i f ( s t a t e . who( n i ) == whoSiteId )
{

i f ( l o c a l p a r e n t [ i ] == −1)
{

l o c a l p a r e n t [ i ] = i ;
}

k l i s t = graph . v e r t i c e s ( ) . get ( n i ) . ad jacent ( ) ;
i n t e r s e c t i o n l i s t = i n t e r S e c t i o n ( ne ighbourList , k l i s t ) ;

for ( int j = 0 ; j < i n t e r s e c t i o n l i s t . s i z e ( ) ; j++)
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{
f ina l int nj = i n t e r s e c t i o n l i s t . get ( j ) . index ( ) ;

i f ( ( s t a t e . who ( nj ) == whoSiteId ) && ( ni != s i t e I d ) )
{
for ( int m = 0 ; m < numNeighbours ; m++)
{
i f ( (m != i ) && ( nj == ne ighbourL i s t . get (m) . index ( ) ) )
{
i f ( l o c a l p a r e n t [m] == −1)
{

l o c a l p a r e n t [m] = i ;
break ;

}
else
{

int mRoot = m;
int iRoot = i ;
while (mRoot != l o c a l p a r e n t [ mRoot ] )

mRoot = l o c a l p a r e n t [ mRoot ] ;
while ( iRoot != l o c a l p a r e n t [ iRoot ] )

iRoot = l o c a l p a r e n t [ iRoot ] ;

l o c a l p a r e n t [ iRoot ] = l o c a l p a r e n t [ mRoot ] ;
break ;
}
}
}
}
}
}
}

for ( int k = 0 ; k < numNeighbours ; k++)
{

i f ( l o c a l p a r e n t [ k ] == k )
{

adjacentSetsnumber++;
}

}
i f ( ( ( adjacentSetsnumber > 1) &&
( dirnChoice == Abso luteDi rec t i on . Al l ) )
| |
( ( adjacentSetsnumber > 0) &&

( dirnChoice == Abso luteDi rec t i on . Orthogonal ) ) )
{

i f ( ( enemyCheck ) | | ( emptyCheck ) )
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{
i f ( r i n g f l a g )
{
for ( int k = 0 ; k < numNeighbours ; k++)
{
f ina l int p r e s e n t P o s i t i o n

= ne ighbourL i s t . get ( k ) . index ( ) ;
i f ( ( s t a t e . who ( p r e s e n t P o s i t i o n ) != whoSiteId ) )
{
opponent = fa l se ;
edgeFound = fa l se ;

f r e e C e l l = fa l se ;

i f ( dfsMarked [ p r e s e n t P o s i t i o n ] == 0)
{
i f ( enemyCheck )
{

df sCyc l e ( p r e s entPos i t i on , s i t e I d ,
−1, graph , s ta te , whoSiteId , whoId , 0 , dfsMarked ,
dfsParent , dfsColour , d f s I t r , u f ) ;

i f ( opponent && ! edgeFound )
{
return true ;
}
}
i f ( emptyCheck )
{

df sCyc l e ( p r e s entPos i t i on , s i t e I d ,
−1, graph , s ta te , whoSiteId , whoId , 0 , dfsMarked ,

dfsParent , dfsColour , d f s I t r , u f ) ;
i f ( f r e e C e l l && ! edgeFound )
{

return true ;
}
}
}

}
}
}
}

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( f u l l R i n g | | a l l | | de f au l tF l ag )
{
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i f ( ( adjacentSetsnumber == 1) &&
( dirnChoice == Abso luteDi rec t i on . Al l ) )
{

f ina l int maxOrthogonal = graph . v e r t i c e s ( )
. get ( s i t e I d ) . maxOrtho ( ) ;

f ina l List<Vertex> o r thogona lL i s t = graph . v e r t i c e s ( )
. get ( s i t e I d ) . or thogona l ( ) ;

int sameColorNeighbour1 = 0 ;
for ( int i = 0 ; i < o r thogona lL i s t . s i z e ( ) ; i++)
{

f ina l int ni = or thogona lL i s t . get ( i ) . index ( ) ;
i f ( s t a t e . who( n i ) == whoSiteId )
{

sameColorNeighbour1++;
i f ( sameColorNeighbour1 == maxOrthogonal )
{

return true ;
}

}
}

}
i f ( d i rnChoice == Abso luteDi rec t i on . Orthogonal )
{

f ina l int maxOrthogonal = graph . v e r t i c e s ( )
. get ( s i t e I d ) . maxOrtho ( ) ∗ 2 ;

f ina l List<Vertex> nLi s t = graph . v e r t i c e s ( )
. get ( s i t e I d ) . ad jacent ( ) ;

int sameColorNeighbour1 = 0 ;
for ( int i = 0 ; i < nLi s t . s i z e ( ) ; i++)
{

f ina l int ni = nLi s t . get ( i ) . index ( ) ;
i f ( s t a t e . who( n i ) == whoSiteId )
{

sameColorNeighbour1++;
i f ( sameColorNeighbour1 == maxOrthogonal )
{

return true ;
}

}
}

}

i f ( ( adjacentSetsnumber == 1) &&
( dirnChoice == Abso luteDi rec t i on . Orthogonal ) )
{
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f ina l int maxOrthogonal = graph . v e r t i c e s ( )
. get ( s i t e I d ) . maxOrtho ( ) ;

f ina l int maxAdjacent = graph . v e r t i c e s ( ) . get ( s i t e I d )
. ad jacent ( ) . s i z e ( ) ;

i f ( ( maxOrthogonal == 6) && ( maxAdjacent == 6))
{
f ina l List<Vertex> o r thogona lL i s t = graph . v e r t i c e s ( )

. get ( s i t e I d ) . or thogona l ( ) ;

int sameColorNeighbour1 = 0 ;
for ( int i = 0 ; i < o r thogona lL i s t . s i z e ( ) ; i++)
{

f ina l int ni = or thogona lL i s t . get ( i ) . index ( ) ;
i f ( s t a t e . who( n i ) == whoSiteId )
{

sameColorNeighbour1++;
i f ( sameColorNeighbour1 == maxOrthogonal )
{

return true ;
}

}
}

}
}

i f ( ( adjacentSetsnumber == 1) | |
( adjacentSetsnumber == 2))
{
for ( int i = 0 ; i < numNeighbours ; i++)
{
f ina l int ni = ne ighbourL i s t . get ( i ) . index ( ) ;
f ina l int maxOrthogonal ;

i f ( s t a t e . who( n i ) == whoSiteId )
{
i f ( d i rnChoice == Abso luteDi rec t i on . Al l )
{

kL i s t = graph . v e r t i c e s ( ) . get ( n i ) . or thogona l ( ) ;
maxOrthogonal = graph . v e r t i c e s ( )

. get ( n i ) . maxOrtho ( ) ;
}
else
{

kL i s t = graph . v e r t i c e s ( ) . get ( n i ) . ad jacent ( ) ;
maxOrthogonal = graph . v e r t i c e s ( ) . get ( n i )

. maxOrtho ( ) ∗ 2 ;
}
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int sameColorNeighbour = 0 ;

for ( int k = 0 ; k < kL i s t . s i z e ( ) ; k++)
{
i f ( s t a t e . who( kL i s t . get ( k ) . index ())== whoSiteId )
{

sameColorNeighbour++;
i f ( sameColorNeighbour == maxOrthogonal )
{

return true ;
}

}
}
}

}
}

i f ( ( adjacentSetsnumber == 1) &&
( dirnChoice == Abso luteDi rec t i on . Orthogonal ) )
{

f ina l List<Vertex> o r thoL i s t = graph . v e r t i c e s ( )
. get ( s i t e I d ) . or thogona l ( ) ;

for ( int i = 0 ; i < o r thoL i s t . s i z e ( ) ; i++)
{

f ina l int ni = or thoL i s t . get ( i ) . index ( ) ;
int maxOrthogonal ;

i f ( s t a t e . who( n i ) == whoSiteId )
{

kL i s t = graph . v e r t i c e s ( ) . get ( n i ) . ad jacent ( ) ;

maxOrthogonal = graph . v e r t i c e s ( )
. get ( n i ) . maxOrtho ( ) ;

int numberFull = maxOrthogonal ∗ 2 ;

i f ( ( maxOrthogonal == 6) && ( kL i s t . s i z e ( ) == 6))
{

numberFull = 6 ;
}
int sameColorNeighbour = 0 ;

for ( int k = 0 ; k < kL i s t . s i z e ( ) ; k++)
{
i f ( s t a t e . who( kL i s t . get ( k ) . index ( ) ) == whoSiteId )
{

sameColorNeighbour++;
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i f ( sameColorNeighbour == numberFull )
{
return true ;
}
}
}
}
}
}
}
return fa l se ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗
∗ @param pre s en tPos i t i on The pre sen t v e r t e x o f the DFS t r a v e r s e .
∗ @param s i t e I d The l a s t move o f the curren t game s t a t e .
∗ @param p Parent o f each v e r t e x .
∗ @param graph Present s t a t u s o f graph .
∗ @param s t a t e Present game s t a t e .
∗ @param whoSi teId The l a s t move p l aye r ’ s type .
∗ @param whoId The opponent p l aye r type o f the l a s t move .
∗ @param coun t I t r Maximum i t e r a t i o n range f o r the board Less game .
∗ @param dfsMarked use to v i s i t e d v e r t i c e s in d f s .
∗ @param dfsParent use to s t o r e i n f o f o r parent v e r t i c e s in d f s .
∗ @param df sCo lor use to s t o r e i n f o f o r c y c l e in d f s .
∗ @param d f s I t r use to make a l im i t o f i t e r a t i o n f o r the Board less games .
∗ @param uf The o b j e c t o f the union−f i n d .
∗
∗ Remarks d f s c y c l e ( ) use to s e t some g l o b a l f l a g , such as f r e eCe l l ,
∗ edgeFound , and i n s i d e o f the ring , t h e r e i s any
∗ opponent p l aye r or not .
∗/
private void df sCyc l e
(
f ina l int pre s entPos i t i on ,
f ina l int s i t e I d ,
f ina l int p ,
f ina l Graph graph ,
f ina l Conta inerState s tate ,
f ina l int whoSiteId ,
f ina l int whoId ,
f ina l int countI t r ,
f ina l int [ ] dfsMarked ,
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f ina l int [ ] dfsParent ,
f ina l int [ ] d fsColour ,
f ina l int d f s I t r ,
f ina l UnionInfo uf

)
{
f ina l TIntArrayList v e r t i c e s L i s t ;
int newcountItr = count I t r ;

i f ( edgeFound )
{
return ;
}

i f ( newcountItr >= d f s I t r )
{

edgeFound = true ;
return ;
}

i f ( d i rnChoice == Abso luteDi rec t i on . Orthogonal )
{

v e r t i c e s L i s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( )
. get ( p r e s e n t P o s i t i o n ) . ad jacent ( ) ) ;

}
else
{
v e r t i c e s L i s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( )

. get ( p r e s e n t P o s i t i o n ) . or thogona l ( ) ) ;
}

i f ( v e r t i c e s L i s t == null )
{
i f ( ( s t a t e . who( p r e s e n t P o s i t i o n ) == whoSiteId ) )
return ;
edgeFound = true ;
return ;
}

i f ( d i rnChoice == Abso luteDi rec t i on . Orthogonal )
{
i f ( s t a t e . who( p r e s e n t P o s i t i o n ) == whoSiteId )
{
f ina l int r oo tPre s en tPos i t i on = f i n d (

pre s entPos i t i on , uf , whoSiteId ) ;
f ina l int r o o t S i t e I d = f i n d ( s i t e I d , uf , whoSiteId ) ;
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i f ( r o o t S i t e I d != roo tPre s en tPos i t i on )
{

edgeFound = true ;
return ;

}
}

}

i f ( ( p r e s e n t P o s i t i o n == s i t e I d ) | |
( s t a t e . who( p r e s e n t P o s i t i o n ) == whoSiteId ) )
{

return ;
}

f ina l List<Vertex> o u t e r L i s t = graph . outer ( ) ;

for ( int i = 0 ; i < o u t e r L i s t . s i z e ( ) ; i++)
{
f ina l int edgevertex = o u t e r L i s t . get ( i ) . index ( ) ;
i f ( edgevertex == p r e s e n t P o s i t i o n )
{
i f ( ( s t a t e . who( p r e s e n t P o s i t i o n ) == whoSiteId ) )
return ;
edgeFound = true ;
return ;
}
}
// a l l i s v i s i t e d
i f ( d f sColour [ p r e s e n t P o s i t i o n ] == 2)
{

return ;
}
// a l r eady v i s i t e d but not f i n i s h e d ( but t h i s i s a c y c l e )
i f ( d f sColour [ p r e s e n t P o s i t i o n ] == 1)
{

int cur = p ;
dfsMarked [ cur ] = 1 ;
while ( cur != p r e s e n t P o s i t i o n )
{

cur = dfsParent [ cur ] ;
dfsMarked [ cur ] = 1 ;
}
return ;
}
i f ( s t a t e . who( p r e s e n t P o s i t i o n ) == whoId )
{

opponent = true ;
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}

i f ( ( s t a t e . who( p r e s e n t P o s i t i o n ) != whoId ) &&
( s t a t e . who( p r e s e n t P o s i t i o n ) != whoSiteId ) )
{

f r e e C e l l = true ;
}
dfsParent [ p r e s e n t P o s i t i o n ] = p ;
d f sColour [ p r e s e n t P o s i t i o n ] = 1 ;

for ( int i = 0 ; i < v e r t i c e s L i s t . s i z e ( ) ; i++)
{

f ina l int nextPos i t i on = v e r t i c e s L i s t . getQuick ( i ) ;

i f ( nextPos i t i on == dfsParent [ p r e s e n t P o s i t i o n ] )
continue ;

newcountItr++;
d f sCyc l e ( nextPos i t ion , s i t e I d , p r e s en tPos i t i on ,
graph , s ta te , whoSiteId , whoId , newcountItr ,
dfsMarked , dfsParent , dfsColour , d f s I t r , u f ) ;
}

dfsColour [ p r e s e n t P o s i t i o n ] = 2 ;
}
}
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C.4 groupSizeProduct

/∗∗
∗ I t r e tu rns a mu l t i p l i c a t i o n va lue o f the a l l group s i z e .
∗ (End func t i on )
∗
∗ @author tahmina
∗/

public f ina l class GroupProduct extends BaseIntFunction
{
private stat ic f ina l long se r ia lVers ionUID = 1L ;

/∗∗ the type o f p l aye r ∗∗/
private f ina l RoleType who ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗ Constructor .
∗ @param who : Player ’ s type
∗/
public GroupProduct
(
f ina l RoleType who

)
{
this . who = who ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ @param con tex t The current Context o f the game board .
∗
∗ @return The mu l t i p l i e d va lue o f the a l l group s i z e o f a p l aye r .
∗
∗/

@Override
public int eva l ( f ina l Context context )
{
f ina l Graph graph = context . graph ( ) ;
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ 0 ] ;
f ina l int t o t a l v e r t i c e s= graph . v e r t i c e s ( ) . s i z e ( ) ;
f ina l int whoSiteId = new IndexOf (who ) . eva l ( context ) ;
f ina l int numPlayers = context . game ( ) . p l a ye r s ( ) . count ( ) ;
int mulValue = 1 ;

for ( int i = 0 ; i < t o t a l v e r t i c e s ; i++)
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{
f ina l List<Vertex> neighbours = graph . v e r t i c e s ( ) . get ( i ) . ad jacent ( ) ;
i f ( s t a t e . who( i ) != 0)
{

unionAl l ( i , s ta te , neighbours , s t a t e . un ionIn fo ( ) [ numPlayers + 1 ] ,
numPlayers + 1 , numPlayers ) ;

}
i f ( s t a t e . who( i ) == whoSiteId )
{

unionAl l ( i , s ta te , neighbours , s t a t e . un ionIn fo ( ) [ whoSiteId ] ,
whoSiteId , numPlayers ) ;

}
}

for ( int i = 0 ; i < t o t a l v e r t i c e s ; i++)
{
i f ( i == s t a t e . un ionIn fo ( ) [ whoSiteId ] . getParent ( i , whoSiteId ) )
{
f ina l int eachGroupSize = s t a t e . un ionIn fo ( ) [ whoSiteId ]

. getGroupSize ( i , whoSiteId ) ;
i f ( eachGroupSize > 0)
{

mulValue = mulValue ∗ eachGroupSize ;
}
}
}

return mulValue ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗
∗ @param s i t e I d The each move o f the game .
∗ @param s t a t e Each s t a t e in format ion .
∗ @param va l i d a t ePo s i t i o n s The ad jacen t l i s t o f our l a s t movement .
∗ @param uf The o b j e c t o f the union−f i n d .
∗ @param whoSi teId The l a s t move p l aye r ’ s type .
∗
∗ Remarks This f unc t i on w i l l not re turn any t h i n g s .
∗
∗/
private stat ic void unionAl l
(
f ina l int s i t e I d ,
f ina l Conta inerState s tate ,
f ina l List<Vertex> v a l i d a t e P o s i t i o n s ,
f ina l UnionInfo uf ,
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f ina l int whoSiteId ,
f ina l int numPlayers

)
{

f ina l int v a l i d a t e P o s i t i o n s S i z e = v a l i d a t e P o s i t i o n s . s i z e ( ) ;

u f . set I tem ( s i t e I d , s i t e I d , whoSiteId ) ;
uf . s e tParent ( s i t e I d , s i t e I d , whoSiteId ) ;

for ( int i = 0 ; i < v a l i d a t e P o s i t i o n s S i z e ; i++)
{
f ina l int ni = v a l i d a t e P o s i t i o n s . get ( i ) . index ( ) ;
boolean connect = true ;

i f
(

( ( n i < s i t e I d ) && ( s t a t e . who ( n i ) == whoSiteId ) &&
( whoSiteId != numPlayers + 1) ) | |
( ( whoSiteId == numPlayers + 1) &&
( s t a t e . who ( n i ) != 0) && ( ni < s i t e I d ) )
)
{
for ( int j = i + 1 ; j < v a l i d a t e P o s i t i o n s S i z e ; j++)
{
f ina l int nj = v a l i d a t e P o s i t i o n s . get ( j ) . index ( ) ;
i f ( connected ( ni , nj , uf , whoSiteId ) )
{

connect = fa l se ;
break ;
}
}
i f ( connect )
{

f ina l int rootP = f i n d ( ni , uf , whoSiteId ) ;
f ina l int rootQ = f i n d ( s i t e I d , uf , whoSiteId ) ;

i f ( uf . getGroupSize ( rootP , whoSiteId )
< uf . getGroupSize ( rootQ , whoSiteId ) )

{
uf . se tParent ( rootP , rootQ , whoSiteId ) ;
uf . mergeItemsLists ( rootQ , rootP , whoSiteId ) ;

}
else
{

uf . se tParent ( rootQ , rootP , whoSiteId ) ;
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uf . mergeItemsLists ( rootP , rootQ , whoSiteId ) ;
}
}
}
}
}
}
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C.5 groupCount

/∗∗
∗ I t r e tu rns the number o f the a l l group .
∗
∗ @author tahmina
∗/

public f ina l class GroupCount extends BaseIntFunction
{
private stat ic f ina l long se r ia lVers ionUID = 1L ;

/∗∗ The type o f p l aye r ∗∗/
private f ina l RoleType who ;

/∗∗ The minimum s i z e o f a group ∗/
private f ina l IntFunct ion minFn ;

/∗∗ The t o t a l number o f p l a y e r s ∗∗/
private int numPlayers ;

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗ Constructor .
∗
∗ @param who Player ’ s type
∗/
public GroupCount

(
f ina l RoleType who ,
@Opt @Name f ina l IntFunct ion min

)
{

this . who = who ;
this . minFn = ( min == null ) ? new IntConstant (0 ) : min ;

}
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
@Override
public int eva l ( f ina l Context context )
{
f ina l Graph graph = context . graph ( ) ;
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ 0 ] ;
f ina l int t o t a l v e r t i c e s = graph . v e r t i c e s ( ) . s i z e ( ) ;
f ina l int whoSiteId = new IndexOf (who ) . eva l ( context ) ;
this . numPlayers = context . game ( ) . p l ay e r s ( ) . count ( ) ;
f ina l int min = minFn . eva l ( context ) ;
int count = 0 ;

99



for ( int i = 0 ; i < t o t a l v e r t i c e s ; i++)
{
i f ( s t a t e . who( i ) != 0)
{

unionAl l ( i , s ta te , graph . v e r t i c e s ( ) . get ( i ) . ad jacent ( ) ,
s t a t e . un ionIn fo ( ) [ numPlayers + 1 ] , numPlayers + 1 ) ;

}
i f ( s t a t e . who( i ) == whoSiteId )
{

unionAl l ( i , s ta te , graph . v e r t i c e s ( ) . get ( i ) . ad jacent ( ) ,
s t a t e . un ionIn fo ( ) [ whoSiteId ] , whoSiteId ) ;

}
}
for ( int i = 0 ; i < t o t a l v e r t i c e s ; i++)
{
f ina l int eachGroupSize = s t a t e . un ionIn fo ( ) [ whoSiteId ]

. getGroupSize ( i , whoSiteId ) ;
i f ( i == s t a t e . un ionIn fo ( ) [ whoSiteId ] . getParent ( i , whoSiteId ) )
{
i f ( eachGroupSize >= min )
count += 1 ;

}
}

return count ;
}
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C.6 groupSize

/∗∗
∗ I t r e tu rns the s i z e o f the a l l groups from a s i t e .
∗
∗ @author tahmina
∗/

public f ina l class GroupSizeUF extends BaseIntFunction
{
private stat ic f ina l long se r ia lVers ionUID = 1L ;
/∗∗ the type o f p l aye r ∗∗/
private f ina l IntFunct ion s i t eFn ;
/∗∗ Direc t ion o f the connect ion . ∗/
private f ina l Abso luteDi rec t i on d i r e c t i o n ;

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ Constructor .
∗/
public GroupSizeUF
(
@Opt f ina l IntFunct ion s i t e ,
@Opt f ina l Abso luteDi rec t i on d i r e c t i o n

)
{
this . s i t eFn = ( s i t e == null ) ? new LastToMove ( null ) : s i t e ;
this . d i r e c t i o n = ( d i r e c t i o n == null )

? Abso luteDi rec t i on . Al l : d i r e c t i o n ;
}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
@Override
public int eva l ( f ina l Context context )
{
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ 0 ] ;
f ina l int s i t e = s i t eFn . eva l ( context ) ;
i f ( s i t e == Constants . Off )
return Constants .UNDEFINED;

f ina l int indexComponent = s t a t e . what ( s i t e ) ;
i f ( indexComponent == 0)
return 0 ;

f ina l int whoSiteId = s t a t e . who( s i t e ) ;
f ina l boolean unionFlag = context . unionFindCal led ( ) ;

i f ( ! unionFlag )
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{
UnionFind . eva l ( context , false , d i r e c t i o n , Constants .UNDEFINED) ;
}

f ina l int parentOfS i t e id = f i n d ( s i t e ,
s t a t e . un ionIn fo ( ) [ whoSiteId ] , whoSiteId ) ;

return s t a t e . un ionIn fo ( ) [ whoSiteId ] . getGroupSize ( parentOfS i te id ,
whoSiteId ) ;

}
}
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C.7 isSingleGroup

/∗∗
∗ To know i f a l l the p i e c e s o f a p l aye r are connected and
∗ form a group .
∗ @author tahmina
∗/

public f ina l class I sS ing leGroup extends BaseBooleanFunction
{
private stat ic f ina l long se r ia lVers ionUID = 1L ;
/∗∗ Player Index ∗/
private f ina l IntFunct ion p laye r Id ;

/∗∗ Direc t ion o f the connect ion . ∗/
private f ina l Abso luteDi rec t i on d i r e c t i o n ;

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗ Constructor .
∗ @param ro l e Type o f p l aye r ( i . e . b l a c k or whi te ) .
∗ @param d i r e c t i o n The d i r e c t i o n o f the connect ion .
∗ @formatter : o f f
∗/
public I sS ing leGroup
(
@Opt @Or f ina l IntFunct ion indexPlayer ,
@Opt @Or f ina l RoleType ro l e ,
@Opt f ina l Abso luteDi rec t i on d i r e c t i o n

)
{
int numNonNull = 0 ;
i f ( indexPlayer != null )

numNonNull++;
i f ( r o l e != null )

numNonNull++;
i f ( numNonNull == 0)
{

p laye r Id = null ;
}
else
{
i f ( indexPlayer != null )

this . p l aye r Id = indexPlayer ;
else
this . p l aye r Id = new IndexOf ( r o l e ) ;
}

103



this . d i r e c t i o n = ( d i r e c t i o n == null )
? Abso luteDi rec t i on . Al l : d i r e c t i o n ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ @param con tex t The current Context o f the game board .
∗
∗ I s a l l the game s tones make one group or not ?
∗
∗/

@Override
public boolean eva l ( f ina l Context context )
{
f ina l int s i t e IdTo = context . t r i a l ( ) . lastMove ( ) . getTo ( ) ;
f ina l Graph graph = context . graph ( ) ;
f ina l int c id = context . con ta ine r Id ( ) [ s i t e IdTo ] ;
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ c id ] ;
f ina l int whoSiteId = s t a t e . who( s i t e IdTo ) ;
f ina l int t o t a l v e r t i c e s = graph . v e r t i c e s ( ) . s i z e ( ) ;
int g roups i z e = 0 ;

for ( int i = 0 ; i < t o t a l v e r t i c e s ; i++)
{
i f ( s t a t e . unionInfoD ( ) [ whoSiteId ] . getParent ( i , whoSiteId ) == i )
{

g roups i z e++;
}
}
return ( g roups i z e == 1 ) ;
}
}
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C.8 freedom

/∗∗
∗ I t r e tu rns t o t a l number o f freedom fo r l a s t move .
∗
∗ @author tahmina
∗/

public f ina l class Freedom extends BaseIntFunction
{
private stat ic f ina l long se r ia lVers ionUID = 1L ;
private stat ic int Unused = −1;
/∗∗
∗ Constructor .
∗/

public Freedom
(
)
{
// Do noth ing
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗ @param con tex t The curren t Context o f the game board .
∗
∗ @return Tota l number o f freedom fo r l a s t move .
∗
∗/

@Override
public int eva l ( f ina l Context context )
{
f ina l int s i t e I d = context . t r i a l ( ) . lastMove ( ) . getTo ( ) ;
f ina l Graph graph = context . graph ( ) ;
f ina l int c id = context . con ta ine r Id ( ) [ s i t e I d ] ;
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ c id ] ;
f ina l int whoSiteId = s t a t e . who( s i t e I d ) ;
f ina l int whoSiteIdNext= context . s t a t e ( ) . next ( ) ;
boolean unionActive = fa l se ;
int freedom = 0 ;
f ina l TIntArrayList nL i s t ;

nL i s t = v a l i d P o s i t i o n ( graph . v e r t i c e s ( ) . get ( s i t e I d ) . or thogona l ( ) ) ;

f ina l int nListSz = nLi s t . s i z e ( ) ;
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for ( int i = 0 ; i < nListSz ; i++)
{
f ina l int who = s t a t e . who( nLi s t . getQuick ( i ) ) ;
i f (who != whoSiteIdNext )
{
i f (who != whoSiteId )
{

freedom++;
}
else
{

unionActive = true ;
}
}
}
i f ( ! unionActive )
{
return freedom ;
}

f ina l int t o t a l V e r t i c e s = graph . v e r t i c e s ( ) . s i z e ( ) ;
f ina l BitSet opponentAl lB i t se t = new BitSet ( t o t a l V e r t i c e s ) ;
f ina l BitSet sameAl lB i t se t = new BitSet ( t o t a l V e r t i c e s ) ;
f ina l BitSet nBi t s e t = new BitSet ( t o t a l V e r t i c e s ) ;

for ( int i = 0 ; i < nListSz ; i++)
{
f ina l int ni = nLi s t . getQuick ( i ) ;
i f ( s t a t e . who( n i ) == whoSiteId )
{
f ina l int nRoot = f i n d ( ni , s t a t e . unionInfoD ( )

[ whoSiteId ] , whoSiteId ) ;
sameAl lB i t se t . or ( s t a t e . unionInfoD ( ) [ whoSiteId ]

. g e t I t emsL i s t ( nRoot , whoSiteId ) ) ;
nB i t s e t . or ( s t a t e . unionInfoD ( ) [ whoSiteId ]

. getAllItemWithOrthoNeighbors ( nRoot , whoSiteId ) ) ;
}
}

for ( int j = 0 ; j < t o t a l V e r t i c e s ; j++)
{
i f ( j == s t a t e . unionInfoD ( ) [ whoSiteIdNext ]

. getParent ( j , whoSiteIdNext ) )
{

opponentAl lB i t se t . or ( s t a t e . unionInfoD ( ) [ whoSiteIdNext ]
. g e t I t emsL i s t ( j , whoSiteIdNext ) ) ;

}
}
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for ( int i = 0 ; i < nListSz ; i++)
{

nBi t s e t . s e t ( nL i s t . getQuick ( i ) ) ;
}
opponentAl lB i t se t . and ( nBi t s e t ) ;
nB i t s e t . xor ( opponentAl lB i t se t ) ;
nB i t s e t . xor ( sameAl lB i t se t ) ;
nB i t s e t . c l e a r ( s i t e I d ) ;
return nBi t s e t . c a r d i n a l i t y ( ) ;
}
}
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C.9 enclosed

/∗∗
∗ Moves app l i e d to any enc lo sed group
∗
∗ @author Eric P i e t t e & Tahmina
∗/

public f ina l class Enclosed extends Moves
{
private stat ic f ina l long se r ia lVers ionUID = 1L ;
private stat ic int Unused = −1;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗ Location o f the p i ece . ∗/
private f ina l IntFunct ion startLocat ionFn ;

/∗∗ Direc t ion chosen . ∗/
private f ina l Abso luteDi rec t i on dirnChoice ;

/∗∗ The p i ece to surround . ∗/
private f ina l BooleanFunction targetRule ;

/∗∗ Moves app l i e d a f t e r t ha t one . ∗/
private f ina l Moves next ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/∗∗
∗ Constructor .
∗/
public Enclosed
(
@Opt f ina l IntFunct ion startLocat ionFn ,
@Opt f ina l Abso luteDi rec t i on dirnChoice ,
@Opt @Name f ina l BooleanFunction of ,
@Opt @Name f ina l Moves e f f e c t ,
@Opt f ina l Then consequences

)
{
super ( consequences ) ;
this . s tar tLocat ionFn = ( startLocat ionFn == null )

? new From ( ) : s tar tLocat ionFn ;
this . d i rnChoice = ( dirnChoice == null )

? Abso luteDi rec t i on . Al l : d i rnChoice ;
this . ta rgetRule = ( o f == null )

? new IsEnemy (To . i n s t anc e ( ) , null ) : o f ;
this . next= ( e f f e c t == null )
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? new Remove(To . i n s t anc e ( ) , null , null ) : e f f e c t ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

@Override
public f ina l Moves eva l ( f ina l Context context )
{
f ina l Moves moves = new BaseMoves ( super . consequents ( ) ) ;
f ina l Graph graph = context . graph ( ) ;
f ina l int s i t e IdTo= context . t r i a l ( ) . lastMove ( ) . getTo ( ) ;
f ina l int from = startLocat ionFn . eva l ( context ) ;
f ina l int c id = context . con ta ine r Id ( ) [ s i t e IdTo ] ;
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ c id ] ;
f ina l int whoSiteId = s t a t e . who( s i t e IdTo ) ;
f ina l int whoSiteIdNext = context . s t a t e ( ) . next ( ) ;
f ina l int fromOrig = context . from ( ) ;
f ina l int toOrig = context . to ( ) ;
f ina l int s tepOr ig = context . s tep ( ) ;
f ina l int t o t a l V e r t i c e s = graph . v e r t i c e s ( ) . s i z e ( ) ;
f ina l Vertex fromV = graph . v e r t i c e s ( ) . get ( from ) ;
f ina l BitSet sameAl lB i t se t = new BitSet ( t o t a l V e r t i c e s ) ;

f ina l int [ ] d i r e c t i o n I n d i c e s = context . board ( ) . t i l i n g ( )
. g e tChosenDi r ec t i on Ind i c e s ( d i rnChoice ) ;

for ( int i = 0 ; i < t o t a l V e r t i c e s ; i++)
{
i f ( i == s t a t e . unionInfoD ( ) [ whoSiteId ] . getParent ( i , whoSiteId ) )
{
i f ( s t a t e . unionInfoD ( ) [ whoSiteId ] . getGroupSize ( i , whoSiteId ) != 0)
{

sameAl lB i t se t . or ( s t a t e . unionInfoD ( ) [ whoSiteId ]
. g e t I t emsL i s t ( i , whoSiteId ) ) ;

}
}
}
for ( f ina l int di rn : d i r e c t i o n I n d i c e s )
{
for ( int indexTo = 0 ; indexTo < fromV . indexedRadia l s ( ) [ d i rn ]

. l ength ; indexTo++)
{
f ina l int [ ] path = fromV . indexedRadia l s ( ) [ d i rn ] [ indexTo ] ;
i f ( path . l ength < 2)

continue ;
f ina l int pieceUnderThreat = path [ 1 ] ;
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boolean surrounded = fa l se ;
f ina l int root = f i n d ( pieceUnderThreat , s t a t e . unionInfoD ( )

[ whoSiteIdNext ] , whoSiteIdNext ) ;
i f ( root == Unused )

continue ;

f ina l BitSet numBitset = ( BitSet ) s t a t e . unionInfoD ( ) [ whoSiteIdNext ]
. getAllItemWithOrthoNeighbors ( root , whoSiteIdNext ) . c l one ( ) ;

numBitset . xor ( s t a t e . unionInfoD ( ) [ whoSiteIdNext ]
. g e t I t emsL i s t ( root , whoSiteIdNext ) ) ;

f ina l BitSet tempBitset = ( BitSet ) numBitset . c l one ( ) ;
tempBitset . and ( sameAl lB i t se t ) ;
numBitset . xor ( tempBitset ) ;

i f ( numBitset . c a r d i n a l i t y ( ) == 1)
{

surrounded = true ;
}

i f ( surrounded )
{
f ina l BitSet b i t s e t s P l a y e r =(BitSet ) s t a t e
. unionInfoD ( ) [ whoSiteIdNext ] . g e t I t emsL i s t ( root , whoSiteIdNext ) . c l one ( ) ;
for ( int i = b i t s e t s P l a y e r . nextSetBit ( 0 ) ;
i >= 0 ; i = b i t s e t s P l a y e r . nextSetBit ( i + 1) )
{
boolean alreadyOnIt = fa l se ;
for ( f ina l Move m : moves . moves ( ) )
{
i f (m. getTo ( ) == i )
{

alreadyOnIt = true ;
break ;
}
}
i f ( ! a lreadyOnIt )
//INTERFACE DELETION
}
}
}
}

context . s e tStep ( stepOr ig ) ;
context . setFrom ( fromOrig ) ;
context . setTo ( toOrig ) ;
return moves ;
}
}
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C.10 sizeTerritory

/∗∗
∗ Presen t l y : I t r e tu rns t o t a l number o f Terr i t o ry o f a s p e c i f i c Player .
∗
∗ @author tahmina
∗/
public f ina l class S i z e T e r r i t o r y extends BaseIntFunction
{
private stat ic f ina l long se r ia lVers ionUID = 1L ;
private stat ic int Unused = −1;

private f ina l IntFunct ion indexPlayer ;

/∗∗
∗ Constructor .
∗ @param ro l e Player ’ s type .
∗/
public S i z e T e r r i t o r y
(
f ina l RoleType r o l e

)
{

indexPlayer = new IndexOf ( r o l e ) ;
}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/∗∗
∗ @param con tex t The current Context o f the game board .
∗
∗ @return The mu l t i p l i e d va lue o f the a l l group s i z e o f a p l aye r .
∗
∗/

@Override
public int eva l ( f ina l Context context )
{
f ina l Graph graph = context . graph ( ) ;
f ina l Conta inerState s t a t e = context . s t a t e ( ) . c o n t a i n e r S t a t e s ( ) [ 0 ] ;
f ina l int whoSiteId = indexPlayer . eva l ( context ) ;
f ina l int t o t a l V e r t i c e s = graph . v e r t i c e s ( ) . s i z e ( ) ;
f ina l int [ ] l o ca lPa r en t = new int [ t o t a l V e r t i c e s ] ;
f ina l int [ ] rank = new int [ t o t a l V e r t i c e s ] ;
f ina l BitSet [ ] localItemWithOrth = new BitSet [ t o t a l V e r t i c e s ] ;
int s i z e T e r r i t o r y = 0 ;

for ( int i = 0 ; i < t o t a l V e r t i c e s ; i++)
{
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localItemWithOrth [ i ] = new BitSet ( t o t a l V e r t i c e s ) ;
l o ca lPa r en t [ i ] = Unused ;
rank [ i ] = 0 ;
}

for ( int k = 0 ; k < t o t a l V e r t i c e s ; k++)
{
i f ( s t a t e . who ( k ) == 0)
{
l o ca lPa r en t [ k ] = k ;
localItemWithOrth [ k ] . s e t ( k ) ;

f ina l TIntArrayList nL i s t = v a l i d P o s i t i o n A l l ( graph
. v e r t i c e s ( ) . get ( k ) . or thogona l ( ) ) ;

for ( int i = 0 ; i < nLi s t . s i z e ( ) ; i++)
{

localItemWithOrth [ k ] . s e t ( nL i s t . get ( i ) ) ;
}

for ( int i = 0 ; i < nLi s t . s i z e ( ) ; i++)
{

f ina l int ni = nLi s t . get ( i ) ;
boolean connect = true ;

i f ( ( s t a t e . who ( n i ) == 0) && ( ni < k ) )
{
for ( int j = i + 1 ; j < nLi s t . s i z e ( ) ; j++)
{

f ina l int nj = nLi s t . get ( j ) ;
i f ( s t a t e . who( nj ) == 0)
{

i f ( connected ( ni , nj , l o ca lPa r en t ) )
{

connect = fa l se ;
break ;

}
}
}
i f ( connect )
{
f ina l int rootP = f i n d ( ni , l o ca lPa r en t ) ;
f ina l int rootQ = f i n d (k , l o ca lPa r en t ) ;

i f ( rank [ rootP ] < rank [ rootQ ] )
{

l o ca lPa r en t [ rootP ] = rootQ ;
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localItemWithOrth [ rootQ ] . or ( localItemWithOrth [ rootP ] ) ;
}
else
{

l o ca lPa r en t [ rootQ ] = rootP ;
localItemWithOrth [ rootP ] . or ( localItemWithOrth [ rootQ ] ) ;

i f ( rank [ rootP ] == rank [ rootQ ] )
{

rank [ rootP ]++;
}
}
}
}
}
}
}

for ( int i = 0 ; i < t o t a l V e r t i c e s ; i++)
{

i f ( i == loca lPa r en t [ i ] )
{
boolean f l a g T e r r i t o r y = true ;
int count = 0 ;

for ( int j = localItemWithOrth [ i ] . nextSetBit ( 0 ) ; j >= 0 ;
j = localItemWithOrth [ i ] . nextSetBit ( j + 1) )

{
i f ( s t a t e . who( j ) == 0)
{

count++;
}
i f ( ( s t a t e . who( j ) != whoSiteId ) && ( s t a t e . who( j ) != 0) )
{

f l a g T e r r i t o r y = fa l se ;
}
}

i f ( f l a g T e r r i t o r y )
{

s i z e T e r r i t o r y += count ;
}

}
}
return s i z e T e r r i t o r y ;
}
}
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Appendix D Experimental Data

D.1 TEST-1

Table 1: p/s for Chameleon.

Test-1(Chameleon) 7x7 11X11 15x15 19X19

QU
Mean 4888.55 992.6 307.45 124.2
STDEV 8.035939011 1.846761034 2.089447169 1.151657844

RUQPC
Mean 4900 998.4 311.1 124.25
STDEV 8.111071057 6.451438028 2.789076436 1.860248993

WQUPC
Mean 4908.05 993.65 310.15 125
SD 16.35936879 6.06347998 0.8750939799 0.3244428423

Table 2: m/s for Chameleon.

Test-1(Chameleon) 7x7 11X11 15x15 19X19

QU
Mean 251389.45 123831.25 70401.05 45395.65
STDEV 441.8884683 536.4841563 617.0585978 493.1779091

RQUPC

Mean 252009.35 124890.55 71258.6 45694.3
STDEV 394.7961866 764.8718142 577.3445929 632.1804456

WQUPC
Mean 252549.3 124123.75 71168.25 45836.25
STDEV 496.9442519 558.1020351 124.825299 396.5451955
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Table 3: p/s for Hex.

Test-1(Hex) 7x7 9X9 11X11 13x13 15x15 17x17 19X19

QU
Mean 34742.4 20396.1 12094.35 8357.65 5936.4 4355.1 3314
STDEV 897.5447445 782.4434669 690.0225988 146.2101138 25.49179435 94.39943131 69.27519492

RQUPC
Mean 36924.85 19244.45 12096.4 8023.4 6105.65 4536.25 3506.7
STDEV 556.7675765 723.1540911 243.7847195 232.2377185 116.3765553 22.30618276 60.03604181

WQUPC
Mean 37069.7 19881.5 12645.65 8373.8 5986.35 4475.75 3468.9
STDEV 1061.666818 700.8116723 437.1355655 192.1719625 150.4996153 154.8985661 137.2166554

Table 4: m/s for Hex.

Test-1(Hex) 7x7 9X9 11X11 13x13 15x15 17x17 19X19

QU
Mean 1468339.45 1481544.85 1347359.65 1254867.2 1225512.95 1149981.75 1103584.6
STDEV 37954.21497 53929.77592 84806.72493 29435.38635 20048.28731 25859.36141 32387.94976

RQUPC
Mean 1560617.85 1367104.55 1300539.55 1217911.9 1243966 1195180.45 1159932.6
STDEV 23490.30074 51277.64871 26270.28403 35237.05542 24531.70496 11902.2948 21468.94209

WQUPC
Mean 1566698.8 1372936.75 1331633.8 1269169.25 1243711.45 1200878.05 1154100.6
STDEV 44927.24019 53903.50177 46992.2683 31693.60818 34421.50652 47946.59165 46153.97185

D.2 TEST-2

Table 5: p/s for Atari Go,and Gonnect.

Atari Go Go Gonnect
UQ
Mean 1880.3 250.25 190.35
STDEV 16.56279915 1.585294261 1.631111988

RQUPC:
Mean 1827.95 247.8 184.65
STDEV 2.981963324 2.706716792 2.75824124
WQUPC
Mean 1879.75 252.3 191.25
STDEV 16.22173655 4.268612495 2.48945143
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Table 6: m/s for Atari Go,and Gonnect.

Test-2 Atari Go Go Gonnect
UQ
Mean 91251 31198.45 17180.1
STDEV 818.903246 274.7717665 69.50191213

RQUPC:
Mean 88704.15 30398.65 16508.9
STDEV 461.8223941 427.8007745 248.5022292

WQUPC
Mean 91363.35 31412.85 17397.5
STDEV 291.150219 479.9902713 239.5602331

D.3 TEST-3

Table 7: p/s for Hex.

7x7 9X9 11X11 13x13 15x15 17x17 19X19
With UF
Mean 37069.7 19881.5 12645.65 8373.8 5986.35 4475.75 3468.9
STDEV 1061.666818 700.8116723 437.1355655 192.1719625 150.4996153 154.8985661 137.2166554

Without UF
Mean 44642.35 21720.05 11712 6944.2 4510.9 3094.45 2180.95
STDEV 170.1498643 119.744234 22.9645035 26.32509309 25.85567229 6.621138398 7.472581461

Table 8: m/s for Hex.

7x7 9X9 11X11 13x13 15x15 17x17 19X19
With UF
Mean 1566698.8 1372936.75 1331633.8 1269169.25 1243711.45 1200878.05 1154100.6
STDEV 44927.24019 53903.50177 46992.2683 31693.60818 34421.50652 47946.59165 46153.97185

Without UF
Mean 1886749.65 1542598 1259186.7 1054271.85 919796.4 816506.45 723386.7
STDEV 7182.492019 8513.686962 2457.93707 3935.424678 5312.164703 1737.477133 2455.47528
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D.4 TEST-4

Table 9: p/s and m/s for Andantino (hex) and Andantino (square).

WQUPC Regular Andantino(hex-p/s) Special Andantino(square-p/s) Regular Andantino (hex-m/s) Special Andantino (square-m/s)

mean 1123 2145.8 37218.2 54148.7
STDEV 8.83771821 44.94628373 318.9823622 1131.247569

D.5 TEST-5

Table 10: p/s and m/s for Pentalath and Go.

WQUPC Pentalath(61 cells) p/s Go(64 cells) p/s Pentalath(61 cells) m/s Go(64 cells) m/s

Mean 3315.4 536.75 44064.5 75294.7
STDEV 31.52342487 2.48945143 133.7584232 692.3062222

D.6 TEST-6

Table 11: p/s and m/s for Line Of Action (LOA) and Groups.

UQ p/s RQUPC-p/s WQUPC-p/s UQ m/s RQUPC-m/s WQUPC-m/s

LOA
Mean 301.85 320.4 320.95 71890.5 76761.3 76391.95
STDEV 2.007223796 1.759186415 2.645253943 455.9500781 249.6013875 423.2813516
Groups
Mean 78.1 81.45 90.1 184451.6 190926 210829.6
STDEV 2.221900562 1.637552731 1.618966532 2238.535503 2866.69867 3053.212207

D.7 TEST-7

Table 12: p/s and m/s for Havannah and Kensington havannah.

Havannah-p/s Kensington havannah-p/s havannah-m/s Kensington Havannah-m/s
WQUPC
Mean 5040.85 6801.8 234589.1 206968.5
STDEV 209.3182606 38.24794456 9741.40467 1148.854235
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D.8 TEST-8

Table 13: p/s and m/s for Y-hex.

UF(p/s) UFD(m/s) UF(p/s) UFD(m/s)
base-4
Mean 31071.90476 31705.38095 1010420.857 1030991.571
STDEV: 87.37385465 89.73988867 2856.295525 2964.120385

base-5:
Mean 17803.95 18026.35 965232.3 977341.9
STDEV: 94.92350106 111.8891721 5136.078507 6021.635378

base:6
Mean 10039.7 10150.85 820334.75 829436.95
STDEV: 402.8471174 49.0469968 32903.80699 4024.177202

Table 14: p/s and m/s for Cross.

UF(p/s) UFD(m/s) UF(p/s) UFD(m/s)
base-4:
Mean 14621.6 14390.2 452151.3 444983.2
STDEV 88.33989383 140.8902522 2709.594708 4343.330624

base-5:
Mean 7938.95 8027.65 412072.75 416737.3
STDEV 78.5469856 59.55738056 4061.859217 3116.160443
base-6:
Mean 4895.2 4728.1 385008.85 371872.7
STDEV 35.01368154 27.62131138 2736.495094 2166.804781
base-7:
Mean 3121.15 3111.35 347039.1 345890.95
STDEV 21.25602082 26.83531648 2365.63889 2977.356519
base-8:
Mean 2161 2094.8 323203.9 313302.05
STDEV 21.38863446 26.05379051 3192.195564 3891.620776
base-9:
Mean 1511.85 1556.75 292940.55 301660.4
STDEV 29.79451557 15.28630278 5772.377996 2931.805433

118



Table 15: p/s and m/s for Omega.

Omega UF(p/s) UFD(m/s) UF(p/s) UFD(m/s)
2-Player
Mean 15942.6 15758.5 956584.95 945544.5
STDEV 309.4047596 38.03806957 18560.24182 2277.57751
3-player
Mean 14421.45 14334.4 778780.1 774086.3
STDEV 129.4675229 54.76591333 6987.999231 2956.566396
4-player
Mean 13310.15 13224.55 638906.25 634804.65
STDEV 28.99051569 23.99226849 1394.371236 1150.288992
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