
VGC AI Competition - A New Model of
Meta-Game Balance AI Competition

Simão Reis
Artificial Intelligence and

Computer Science Laboratory
University of Porto

Porto, Portugal
simao.reis@outlook.pt

Luís Paulo Reis
Artificial Intelligence and

Computer Science Laboratory
University of Porto

Porto, Portugal
lpreis@fe.up.pt

Nuno Lau
Institute of Electronics and

Informatics Engineering of Aveiro
University of Aveiro

Aveiro, Portugal
nunolau@ua.pt

Abstract—This work presents a framework for a new type of
meta-game balance AI Competition based on Pokémon. Pokémon
battles can be viewed as adversarial games played by AIs. Around
these games, there is also a meta-game: which Pokémon to include
in a team for battles, which moves to pick for every Pokémon in
the team, etc. This meta-game is itself a game with a set of rules
that govern which Pokémon and which moves are available in
the roster that can be selected from, or which attributes (health
points, damage, etc.) a Pokémon or moves should have. The aim
of the framework is to facilitate competitions in creating the
most balanced meta-game possible; one where there is a large
variety of Pokémon and moves to choose from, and many possible
combinations that are effective. AI agents could assist human
designers in achieving strategically expressive meta-games, and
this type of benchmark could incentivize game designers and
researchers alike to advance knowledge on this type of domain.

Index Terms—Competitive Games, AI Competition, Automatic
Game Design, Multi-Agent Systems, Multi-Task Learning

I. INTRODUCTION

There have been changes on how the online multiplayer
games media is consumed, notably over e-sports where video
games are used as a medium for competitive scenes. This
universe of games must engage players on a deep level of
strategy and dexterity to compete for supremacy. One of the
central components of this universe of games is that players
can control one or several agents/units acting in the game, and
they have the option of choosing what unit(s) they intend to
use before starting a match.

Although multiplayer games have distinct mechanics and
gameplay styles, they share similarities in terms of pre-game
preparations: (i) in collectible cards games, players must
assemble a deck, choosing strategically the cards from the
available pool to compete against other players, with notorious
examples Magic: The Gathering (Wizards of the Coast, 1994)
both in tabletop and online variants, and Hearthstone (Blizzard

This work was supported by: National funding by FCT, Foundation for
Science and Technology, and European funding by ESF, European Social
Fund, through the individual research grant SFRH/BD/129445/2017; Artificial
Intelligence and Computer Science Laboratory – LIACC (UIDB/00027/2020);
and Institute of Electronics and Informatics Engineering of Aveiro – IEETA
(UIDB/00127/2020).

Entertainment, 2014); (ii) in fighting games, players must
choose from an array of available fighters and confront the
opponent to compare their fighting skill, like in Street Fighter
series (Capcom, 1987) and Tekken (Bandai Namco, 1994);
(iii) in real-time strategic games, players or teams control one
or multiple units to defeat the opponent using a vast set of
abilities, some unique to certain champions, like Dota 2 (Valve,
2013) and StarCraft (Blizzard Entertainment 1998).

Strategic interest of the above games results from the fact
that some units are good at some things while others at other
things; or they are good at different times in the games; which
allows for greater player choice and gameplay variety. If all
units were identical it would make a boring game. However,
competitive games are critically evaluated on how balanced
they are and on how much diversity of gameplay they can
offer, and it is a decisive factor for players’ retention.

During the game balance phase of game development,
which is the practice of tuning game mechanics to produce a
more immersive and fair game, game designers must perform
exhaustive testing and gameplay analysis as to properly tune
the mechanics of each type of unit (cards, fighters, champions)
allowing for a greater variety of playable mechanics and
strategies in the meta-game, which is the process of predicting
and responding to the opponents’ strategies by knowing the
current usage rates or most used strategies.

Game balance is easily prone to human error which fre-
quently causes flawed designs, for example overpowered units
that have a high win rate independent of the opponent unit(s),
hence removing diversity from the meta-game. Artificial In-
telligence (AI) agents could assist developers by play testing
thousands or millions of games, detecting the cause of eventual
overpowered units and game mechanics to propose and enforce
fixes. It is however not obvious how to train AI agents to
value units or composition of units in this type of scenario.
This is due to game fixes resulting in changes on the game
dynamics, combined with the high combinatorial of possible
unit selections some multiplayer games present, even more so
in a system governed by interdependence task model: knowing
how to play is needed for good unit selection, as knowing what
units are the most probable to be used affects the game itself
when there is hidden information about the opponent’s units.978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Game AI research had many recent milestones. Dota 2
with large scale Reinforcement Learning [1] showed that AI
agents are currently at best only able to defeat human ex-
perts by exploiting their dexterity. Super-human performance
achievements in classic tabletop games like Chess, Go, and
Shogi [2], [3] were possible because they are perfect infor-
mation games. But work in two player imperfect information
games like Poker [4], [5] also shows progress. We believe
similar milestones could be achieved for tasks involving team
building, gameplay and game balance tasks, which would
enhance knowledge for automatic game design through a suit-
able competition model and further motivate the collaboration
between game industry practitioners and Game AI researchers
and gain new insights on this domain of knowledge. This
meets with the recent identified problem of a game master
(designer agent) gaining points for good rules [6].

In this work, we propose a new kind of AI competition
model where AI agents must learn how to perform meta-game
balancing. We assume to have an arbitrary level of freedom
in manipulating game units, albeit restricted by a set of rules
defined by a game designer, in a formal language that allows
him or her to translate their intentions for the meta-game
(i.e., how many units, what mechanics are available, what
metrics the AI agent should prioritize, etc.). To be able to run
this new type of competition, we developed the Video Game
Championships (VGC) [7] AI Framework, which allows to run
an ecosystem that simulates an interdependent task model over
the domain of Pokémon and allows agents to solve the VGC
challenge based on the method used by competitive human
players who try to win by predicting the meta-game.

The remainder of this paper is structured as follows. In
Section II, it is discussed related work in regards with Game
AI competitions, automatic game design techniques, the re-
view of the current results that contributed to the analysis
and development of our VGC AI Competition proposal. In
Section III, we present some background relatively to the
rules, challenges of Pokémon battling, VGCs and meta-game
balancing. Our proposed model of competition, framework and
rules are detailed in Section IV. Finally, in Section V we take
our final notes and present our next goals.

II. RELATED WORK

A. Game Design AI Competitions

We can observe the recent proposals for the annual IEEE
Conference on Games (CoG) where most entries are based
on real-time video games with perfect information like the
StarCraft AI Competition [8], or the Fighting Game AI Com-
petition [9]. However some competitions started giving the
first steps towards game design and balance tasks, but with
major limitations and we discuss some below.

The Hearthstone-AI Competition [10] was proposed for the
IEEE CoG. Not only the card game has challenging properties
like partially observable states, as the players do not know
which cards they are going to draw each turn or which cards
are in the opponent’s hand and deck, of which there are over
2000 cards each with different attributes and game changing

effects that drastically increases the complexity of the game.
Currently the competitions proposed a game track and a deck-
building track, where humans may design the team prior to
the competition and optimize their agents to the designer
team. The work suggests an automatic deck build track, which
is hard since the cards’ power depends on synergies and
combinations between themselves during gameplay; and a
game-balance track where card rate usage is crucial to choose
what are the best deck building options. The balance could be
done at the card pool level or at rules level (game mechanics).
Our target domain coincides with the first, as Pokémons have
the same role as units, similar to cards in card games. The
Strategy Card Game AI competition [11] serves the purpose of
a more lightweight version of the Hearthstone-AI Competition.

The General Video Game AI (GVGAI) competition [12],
[13] poses the challenge of creating AI solutions that can play
a wide range of games. It promotes the devising of algorithms
that are able to play any game they are given, even if the
game is unknown a priori. This highly contrasts with all other
competitions which focus on a single game domain. It is built
upon the Video Game Description Language (VGDL) [14],
accommodating two-player games, and, more interestingly
provides challenge for procedural content generation (PCG)
in terms of level [15] and rule generation [16], which is one
of the few domains being proposed in automatic game design
competitions. A next benchmark for the Pokémon domain
would be to also be able to extend game rules (or mechanics)
in a balanced fashion, conserving the core gameplay.

Ludii [17] is a framework for general board-games, where
new games can be synthesized. Ludii was proposed as a
platform for agent-based competitions but also for Proce-
dural Content Generation competitions [18]. By using the
Ludii framework it is possible to run competitions for game
generation, or certain aspect of games (rules, puzzles, or
tutorials). It can enforce multiple generational requirements
and proposes evaluation by human opinion or agent validation.
This contrasts with our game balance competition, where we
restrict ourselves to an original Pokémon roster (rule set) and
try to convert it into a more high-quality roster.

In conclusion, exist studies for automatic design of games
or game balance, but these are still limited, since they lack a
formal execution model and formal evaluation model, which is
crucial to further research in these fields through competitions.

B. Pokémon AI Environments and Competitions

Multiple fan-made Pokémon simulators have been devel-
oped over the years like the Pokémon Showdown Battle
Simulator [19] and the Pokémon Online [20], which focuses
on human user-experience. Pokémon Battle Engine (PBE) [21]
complies to the de facto standard Reinforcement Learning
API Gym from OpenAI [22] and enables generalized training
through random team configurations. To a meta-game balance
competition, where a roster is tuned, balance (or designer)
agents must be able to propose fixes, but the roster must be
unpredictable before the competition, as balance fixes may be
hard coded by human competitors on the designer agents. The

Pokémon Showdown and the Pokémon Online work with the
official Pokémon roster, not complying with our requirements,
motivating us to extend PBE into the VGC AI Framework.

A Pokémon battling AI competition was recently proposed,
known as Showdown AI Competition [23]. The Showdown
AI Competition API is a modified version of the Showdown
battle simulator, providing methods for agents to act over the
full roster and mechanics, but does not propose a game balance
track. However, the study identifies eight main properties that
contrast Pokémon Battling with other games worth discussing:
(i) Branching Factor - with four move actions and up to
five switch actions; (ii) Infinite Looping - when both agents
choose to switch endlessly without causing any damage to
the opposing Pokémon. (iii) Turn Atomicity - In a clean
state, HP and statistics are sufficient to determine the actions’
immediate value, but over-time conditions like burned or field
effects like sandstorm become hard to quantify, resulting in
delayed rewards; (iv) Stochasticity - damage calculation is
dependent of random parameters; (v) Hidden Information -
this environment is partially-observable (opponent party and
their Pokémon moves); (vi) Deception - caused by a single
ability, where a Pokémon appears in battle disguised as another
Pokémon from the opponent’s party until is hit by a damaging
move; (vii) Lightweight Simulation - with low graphical
requirements, the environment outperforms many other video-
game simulators. Therefore, Pokémon battles features several
properties that make it a challenging AI environment.

C. AI Agents for Pokémon Battles

Pokémon Battling agents were developed using multiple AI
approaches. In [24], hard-coded battle agents are used, how-
ever they are sub-optimal as they do not perform tactical long-
term decisions, such as switching when a type disadvantage
is presented. [25] focus on a Q-learning [26] agent achieving
a win-rate of 65% against random opponents, or 90% when
using a Minimax-Q agent. Supervised learning can be used to
predict the likely outcome of Pokémon match-ups [27].

The applicability of deep learning paradigm to Pokémon
was previously demonstrated through a pair of algorithms [21],
GIGAθ and WPLθ [28]. Both are based on Asynchronous
Q-Learning [29], which is a faster-distributed extension of
Deep Q-Learning (DQN) [30]. The base GIGA-WoLF [31]
using the Win or Learn Fast (WoLF) principle, has different
learning rates depending if the agent is winning or losing.
WPL [32] instead makes use of a variable learning rate. Both
GIGAθ and WPLθ were trained in self-play for two million
episodes and were tested in a scenario where a trained agent in
a disadvantageous position played against a random opponent.
The learning results were compared against a hard-coded
baseline that followed the guidelines given by two human
experts. In a 7-type scenario both GIGAθ and WPLθ were
able to converge, but with the full 18 types, only GIGAθ
achieved human performance. This is probably due to GIGA-
WoLF better converge to deterministic policies. Since the base
PBE only supports clean states, deterministic strategies are
sufficient to achieve victory.

Another deep reinforcement learning based approach with
an actor-critic neural network was recently proposed [33]. The
methodology showed to have a low cost training and resulting
with a good performance against random, greedy agent and
tree-search agent and human players alike.

III. BACKGROUND

A. Pokémon Battles and Video Game Championships Rules

Pokémon (Nintendo, Creatures, Game Freak, 1996) battling
is a large state turn-based stochastic simultaneous game with
hidden information from the opponent battle team. In Pokémon
VGCs competitions go beyond battling, a limited but extensive
roster of Pokémon units are available, and it is largely up to
the players to choose and customize their units. After their
selection they must commit with their team for the entirety of
a competition. We selected Pokémon VGCs as the domain of
test for this work because it complies with our requirements
of an interdependent task model, and Pokémon requires not
only unit selection, but unit configuration as well.

In a Pokémon battle, a player competes with a team of
Pokémons, and each Pokémon possesses a set of modifiers
such as hit points, attack, defense and speed, and a set of
four moves. Each turn, the player may select one of four
moves from his active Pokémon, to attack the opponent’s
active Pokémon, or may switch the active Pokémon with one
in the bench. When a Pokémon’s HP depletes, it becomes
unusable for the remainder of the battle and the player is forced
to switch them for another Pokémon. The first player to knock
out the opponent’s entire team wins.

A core mechanic is type advantage, Pokémons and moves
possess a type, and types have different effectiveness against
different types. A FIRE move is super effective against
GRASS Pokémon, and WATER Pokémon resist FIRE moves.
New mechanics were added to the Pokémon battles over the
years, but the core mechanics and goals remained the same.
Some of the most notable changes of more recent Pokémon
generations are the addition of passive abilities, triggered
abilities activated under a certain game condition, and various
equipable items with a wide range of effects.

In VGCs, matches are done as best of three. At the be-
ginning of each battle a player has partial information about
the opponent’s team. In a competition, there is a limited but
extensive roster of allowed Pokémon units (whitelist) where
players may select from to build their team.

B. Meta-Game Design

Meta-gaming is the process of using knowledge outside of
a game to gain an advantage. In competitive multiplayer video
games, meta-game information helps players gain a vision
from the most successful units they can select to play with
and the most probable choices from their opponents. Human
players use their knowledge about the game rules, common
units or composition of units and through theory crafting,
collaboration and competition with other players anticipate
the meta-game to find the most optimal strategies, and finally
engaging in tournaments using a fine-tuned team. The issue

of meta-gaming emerges, in the perspective of players, if
available strategies are too vast becoming too unpredictable,
or the opposite case where the meta-game is centralized over
one dominant strategy, diminishing gameplay depth.

Human game designers performs similar tasks, they must
analyze the meta-game, and if flawed, understand the reasons
and employ fixes (add, remove, or configure units). Therefore,
designers, much like players, must anticipate the meta-game
to tailor its faults and arrange for a good compromise for
a reasonable number of good strategies, so they can offer a
variety of gameplay experiences. However, if every possible
combination of Pokémon becomes equally viable, there is no
more skill expression in the meta-game as every possible team
would be equally strong and that is not desirable either.

For Pokémon, Pykalitics [34] is a free online analytic
platform that aggregates information from VGCs to assist
human players in building their teams. It provides Pokémon
usage statistics and moves, items, abilities most used for a
given Pokémon, and most common team compositions, etc.

IV. POKÉMON VGC AI COMPETITION

The VGC AI Competition aims for the development of
player agents and meta-game balance agents and compare
them in each task. Player agents compete in an ecosystem
based of human VGC competitions and balance agents must
manipulate the existing roster so that the strategy level be-
comes more expressive. First we define what is an Interde-
pendent Task Model, which the competition framework uses
as the base model, describe the framework implementation,
then each track and their purpose.

A. Interdependent Task Model
In an Interdependent Task Model, skills must be acquired

in conjunction, as there is a dependency cycle. In informal
terms, one can think like the chicken and egg problem,
which one came first? In traditional hierarchical learning,
low level behaviors are learned first in isolation and then a
high-level controller learns to coordinate the multiple low-
level behaviors [35]. In an interdependent model, skills must
be obtained in an iterative fashion. If tasks A and B are
interdependent, one can only master A by mastering B and
vice versa. In our case study, as stated above, a game can only
be mastered by knowing how to predict the meta-game, but to
predict the meta-game is also required to master the game.

B. VGC Framework
The VGC Framework purpose is twofold. The first is to run

AI competitions, where contestants submit their solutions. The
second is to allow players to design and train their models in
the same environment where the competition itself is run.

The VGC Framework manages an ecosystem ruled by
an Interdependent Task Model, emulating the main tasks of
competitive Pokémon: (i) team selection; (ii) battling; (iii)
team building; (iv) meta-game balance. Since each task differs
in nature, there may be the need to coordinate different tech-
niques. The framework abstracts all the logic behind managing
the ecosystem, allowing the user to focus on development.

The framework is versatile, it allows use of any of its
parts so contestants can develop and test specific challenges
in isolation, each one associated with a different competition
track. The motivation behind this decision is that isolated
contributions to each task can guide us to the overall com-
prehension of the challenge.

We segmented the framework description in four parts. First,
we introduce the core data objects of the framework, which
are manipulated by the system and software agents. Next, we
describe the architecture, the main modules of the framework,
how they interconnect and how they can be run in isolation.
Third, we detail the new version of the PBE. Lastly, we
describe the framework API, so competitors know how they
can develop and test player and balance agents.

1) Data Model: The core concepts of the framework and
their relationship are illustrated in Fig. 1. A Pokémon Template
defines the possible moves a Pokémon specimen may have,
what are the range of values their attributes can have, and
so on. A Pokémon is an instance of a template with con-
crete moves and attributes configured. A Pokémon Team is
composed of six different Pokémon (a Pokémon Team may
not contain two or more instances of the same template). The
Move Roster defines which moves are legal as the Pokémon
Roster defines which Pokémon Templates are legal for for
the duration of a competition (the roster is a set of rules for
player agents that balance agents can change). A Meta-Data
objects does not have a singular definition, each contestant
may use its own defined structure, i.e., each competitor may
use distinct statistics as strategy to analyze the meta-game.
Meta-Data should contains statistics about gameplay like win-
rates, team/individual Pokémon compositions and other useful
data for decision making of player and balance agents.

Set

Set

Has

List[4] List[6]

Instance

Game Trajectories

Pokémon
Roster

Pokémon
Template

Move
Roster

Pokémon
Move Pokémon

Meta-Data

Pokémon
Team

Fig. 1. VGC Framework Data Model. Game Trajectories provided are not
only from a players’ played games but also from other played games, i.e.,
games historical are public and broadcast to every agent.

2) Architecture: The main requirement that guided our
architecture design was modularity, to be able to run isolated
parts of the whole VGC ecosystem, as we are dealing with
interdependent tasks. We name each major part of the ecosys-
tem a module, which runs sequentially and/or concurrently
to others modules, depending on the case. Each module is
incorporated with logic to manipulate the core data objects
through processes, whose outcome is dependent on behaviors’
decisions. Behaviors and processes are connected through

interactions, where the process gives the AI behavior an ob-
servation and the AI module replies with an action. Processes
are connected by a logic flow and by I/O channels between
modules. The four major modules from the framework are:
(i) the Selection Phase; (ii) the Battle Phase; (iii) the Team
Building Phase; and (iv) the Meta-Game Balance phase. The
four are described below.

In the Selection Phase, given the full player team, partial
information of the opponent team (common knowledge de-
rived from the roster like type, possible moves and attributes
for each opponent team Pokémon) and meta-data the aim is
to choose the most optimal sub-team selection. This is done
in two steps. First, by using meta-data and partial information
of the opponent’s team we predict the opponent units. Given
the predicted team we choose our team that best suits against
the opponent one. The Selection Phase is illustrated in Fig. 2.

Team SelectionFull Player
Team

Opponent
Team View

Meta-Data

Opponent Team
Prediction

Playing
Team

Opponent
Playing Team

Prediction

Selection
Policy

Team
Predictor

Data
Object Process Behavior I/O

Logic
Flow InteractionModule

Selection Phase

Fig. 2. A Selection Phase is constituted of two processes, each interacting
with a respective behavior. The Team Predictor behavior predicts the opponent
team structure. The prediction is provided to the Selection Policy to choose
strategically the initial active Pokémon and party (non-active Pokémon team
members) against the opponent. This process is an one-shot run where there
are no loops in the logic flow.

In the Battle Phase, in which a player agent competitor,
entering with their selected team, must defeat the opponent.
Each player observes the current game state and choose their
action for this turn. Turns snapshots are stores in the form
of trajectories that used both to update knowledge we have
about the opponent’s team and update the ecosystem’s meta-
game data. The Battle Phase is illustrated in Fig. 3.

Both previous modules make use of a Team Predictor
behaviour, which allows us to reduce the workload of the
Battle Policy, where it can assume it has perfect information
about the game, while we leave the burden of filling the hidden
information to the Team Predictor, which can be reused in the
Selection Phase as well.

The next is Team Building, where between battles each
player is given the opportunity to analyze the meta-game and
restructure their team. First team performance is evaluated
giving their current team and meta-data. The current team
value together with the available roster is used to adapt the
team if needed. When ready the player can engage against
in the competition ecosystem, where is paired against other
players to battle. This process can be repeated until the player
finds a satisfying team within a time limit. Team building

Playing
Team

Opponent
Playing Team

Prediction

Battle Phase

Meta-Data

Pokémon Battle
Engine

Battle
Policy

Team
Predictor

Opponent Team
Prediction

Data Aggregation

Data
Aggregator

Game Trajectories

Opponent
Battle Policy

Fig. 3. A Battle Phase is composed of three processes, the PBE which
interacts with a pair of battle policies, a data aggregation process and team
predictor. Game states and joint actions are propagated in trajectories and
delivered to Team Predictors to update their opponents team prediction. At
the end of battle, game trajectories are broadcast to every agent’s Data Ag-
gregation process which will update the meta-data (usage rates of Pokémons,
moves, teams, etc). There is a loop in the information flow, the PBE runs
until the game reaches a terminal condition.

modules run concurrently with the competition ecosystem,
which consists of sequential pairs of selection phase and a
battle phase. Competitors are put in a match queue in the
competition ecosystem, and after paired, they battle, and meta-
game information is updated after the fact. When allowed, a
competitor may leave the battle queue and proceed to a team
building phase. The Team Building is illustrated in Fig. 4.

Full Player
TeamTeam Building

Meta-Data

Pokémon
Roster

Team ValuationTeam
Valuator Team Building

Team
Builder
Policy

League Ecosystem

Selection PhaseBattle Phase

New Full
Player Team

Fig. 4. Team Building Phase with a Team Valuation and Team building
processes. The form of valuation is defined by the developer of the Team
Valuator and Team Builder Policy modules. The team value could range
from an overall team performance to individual units’ performance or their
synergies and efficacy. The team building policy has access to the roster, as
it needs to know what changes can be made to their team. It finally outputs a
new (possibly changed) team. The framework provides mechanisms to validate
the output team, which may be rejected and changed back to its previous
configuration in the case an illegal team is outputted. Is a one-shot run where
there are no loops in the logic flow.

Lastly, in the Meta-Game Balance module, we aim to
tune the Pokémon roster by analysing an ever evolving VGC
Ecosystem where player agents build teams and battle against
each other. Using that information, a balance agent makes
changes to the Roster in an online fashion aiming to maximize
some balance metrics while subject to design constraints,

both are set by the organizers before the competition. When
the balance agent changes the roster, every player agent is
interrupted and moved to the Team Building Phase with
their teams reflecting the changes of the roster, i.e., changed
moves or even banned Pokémon. The Meta-Game Balance is
illustrated in Fig. 5.

Meta-Game Balance

Meta-Data

Pokémon
Roster

Roster Balance Balance
Policy

VGC Ecosystem

Team Building Design Constraints

Fig. 5. Meta-Game Balance Phase. The roster balance runs concurrently to
a VGC Ecosystem. Organizers can also impose a set of design restrictions to
the agents, i.e., cannot fully change the roster to a completely new one.

In sum, the VGC framework allows to run traditional
AI battle competitions, extend it with team selection, team
building, and run a separated challenge on meta-game balance.

3) Pokémon Battle Engine 2.0: PBE 2.0 inspires from
the primary rules of Pokémon 1v1 battles and now supports
game mechanics to contemplate with all Showdown properties
except for deception. First, all agents that selected to switch
do so. Move order is decided by the greatest speed stage
level or uniformly random if equal for both players. The
speed stage is softly increased by one if the move to be used
has priority. After switching into the new active Pokémon,
all entry hazard damage is applied. Then pre battle effects
are processed. These include if status conditions should be
removed from active Pokémons. Pokémon status conditions
are checked and if they can move, they do so in order. If their
move PP is zero a default move is done instead. When a move
is used its PP is decreased. If the first moving Pokémon causes
the second one to faint, the latter is not allowed to move.
Same logic is applied if their fainting was caused by Entry
Hazard damage. Then post battle effects are processed. These
include clearing the weather after finishing the countdown and
applying status damage. Then fainted Pokémon are recursively
switched, applying Entry Hazard damage and switching again
until all Pokémons of one player are fainted or both active
Pokémon are still not fainted. On reset, all special conditions
are cleared, and stats reset to maximum.

A main learning goal in PBE is the optimization of a long-
term strategy in favor of a worse strategy with immediate
rewards. As such, for reinforcement learning based algorithms,
the environment provides a default reward function given by
R = Rd+Rf+Rv−Rt, where Rd represents the damage dealt
as a fraction of the opponent’s maximum HP, Rf , Rv ∈ {0, 1}
is a bonus if the opponent fainted or victory over the opponent
team was achieved, and Rt represents the damage taken as a
fraction of Pokémon’s maximum possible HP. With unclean

states (effects are on place), recovery moves, and recoil moves,
Rt is the sum of all damage taken, by moves, recoil, status
condition, weather condition or entry hazards.

4) Application Programming Interface: To compete, par-
ticipants must submit an agent that abides by the VGC
Framework Competitor API containing the multiple categories
of behaviours previously discussed. As illustrated in Fig. 6,
depending of the role of the agent (player or balance/designer),
it must contain specific behaviours and will act at different
levels of abstraction.

Game Balance Ecosystem

Selection
Policy

Team
Predictor

Battle
Policy

Data
Aggregator

Team
Valuator

Team
Builder
Policy

Balance
Policy

Balance Agent

VGC Ecosystem

Team Building

Meta-Game Balance

Player Agent

Competitor Agent

Fig. 6. The VGC Framework Competitor API. A player agent acts in the
VGC Ecosystem environment, while a balance agent acts in the Game Balance
Ecosystem environment. Depending on the role, only a selection of behaviours
are needed to be integrated in the agent.

C. Competition Tracks and Rules

Each proposed track tackles different challenges on the
VGC AI Competition. In the Battle Track player agents only
compete with battle policies. In the VGC Track, competitor
agents must master the skills of battling, team selection and
team building. In the Balance Track, balance agents must
manage the roster better than their opponents. Participants only
need to submit a competitor agent with the minimum required
behaviours for the track their participating. Same competitor
agent can be reused for multiple tracks.

1) Battle Track: This is the simplest track, where player
agents compete in a double elimination competition or tree
tournament, where a winner is determined by the outcome
of isolated battles. The agent possesses only a Battle Policy
to compete. At each round, three sequences of matches are
performed between two agents. At the beginning of each
sequence a random team is generated for each player. Players
compete over five battle, and then have more five battles with
teams switched, so a player isn’t affected by teams’ unbalance.

2) VGC Track: In this track, player agents must be able to
compete in a full VGC, where they must build their teams,
do meta game analysis and battle. The model of competition
works as follows: First a Pokémon roster is generated and
player agents may assemble their teams. We then run a
meta-game evolution phase, where agents are paired with
multiple opponents during epochs where they perform at least
a minimum stipulated number of battles, after which players
are allowed to adjust their team, entering a new epoch. By

the end, all players are registered to a final tournament phase
where agents compete like in the Battle Track to determine the
winner, but using their current team configuration instead of
randomly generated ones. This results in a meta-evolutionary
ecosystem where agents can prepare for the final decisive
tournament. However, agents may only choose one of the
team configurations they used in the preliminary stage. These
incentives agents to perform well during the preparation phase
and enrich the meta-data, if they would perform badly on
purpose to affect the meta-game, they will only be able to
compete with weaker used teams.

3) Balance Track: In this track, a balance agent is assigned
to design over time the roster for a full VGC Ecosystem
using data from previous matches. Balance agents compete
in parallel, i.e., each is set in an isolated VGC Ecosystem
instance, but provided with the same initial conditions, which
are a triplet of population of player agents, design restrictions
united with balance metrics and a Pokémon Roster. Organizers
must: (i) provide the player agents, which should be as close
as possible to theoretically-optimal, to run inside the VGC
Ecosystems; (ii) generate an initial roster; and (iii) define a set
of design constraints. These policies make so no trivial balance
agents can be developed and submitted a priori (roster and
restrictions must be unknown to the competitors). Restrictions
(further discussed in Section IV-D) have the role of game
semantics, i.e., the changes should not make a Pokémon unrec-
ognizable. Balance agents are evaluated by score accumulated
over multiple measurements made in epochs of the VGC
Ecosystems. Statistics of the VGC competition (like overall
usages rates of Pokémons and moves) are evaluated by the
balance metric and a percentile of the maximum evaluation is
accumulated until the end of the balance competition.

D. Balance Metrics and Design Constraints

Human players perception of balance is usually correlated
with the meta-game’s diversity, of which there are many types
of: specific team configurations, Pokémon usage, moves usage,
type predominance, types of moves, abilities, what archetypes
are most relevant, etc. A balance agent must perform global
optimization over many parameters, eventually some with
priority over others. Therefore, we need formal metrics to
evaluate the balance task performance.

Typical design changes are done by adding new elements,
removing existing ones, or tuning parameters of existing ones.
In the case of the VGC AI Competition, moves’ attributes can
be tuned, moves can be added or removed from a Pokémon
template, or attributes from the template could be re-adjusted.
But, fixes to the roster could result in uninteresting results, we
could want Pokémons to maintain their main characteristics,
so only moves could be changed but not its type (due to some
aesthetic characteristic).

For the purposes of enabling organizers to define the design
restrictions and balance metrics, we implemented the Design
Constraint Language. Restriction rules can be applied to every
Pokémon or only to specific templates. These rules can,
for example, disable changes on move sets, types and other

attributes, or limit how much a Pokémon can be modified
(the degree of change can be measured by an information
distance metric). We can also define global parameters like
the Pokémon roster size and move roster size.

We propose the four main evaluation dimensions for the
VGC AI Competition: (i) Specimens; (ii) Moves; (iii) Teams;
(iv) Move Effects; (v) Archetypes of the first three dimensions.
The evaluation metric must have some considerations. First,
we cannot evaluate in isolation the various dimensions, be-
cause they may have different impacts in the game outcome.
Therefore, more weight must be given to instances of each
dimension (specimen, move or team), and variety must not
be only measured in quantity of instances but the usage
percentage as well. We also want to evaluate win-rates of
each instance in the same fashion. We reduce this to three
criteria: instance usage rate distribution, and instance win-rate
distribution. See Fig 7 for an example.

restriction:
allpkm:

MOVES_UNCHANGABLE
pkm(7):

TYPE_UNCHANGABLE
roster_size=165
moves_per_pkm=10

targets:
VIABLE_PKMS=[.3,.7]
TYPE_VIABILITY=[.9,]
MAX_WIN_RATE=.55
MOVE_EFFECTS_VIABILITY=[1.,]

SLEEP
WEATHER

Compiled
Language

Data Structure

Design Constraints

Fig. 7. Design Constraint Language Mock Example: Moves cannot be
changed for any Pokémon, template 7 cannot have its type changed. The
target of balance is to have a viable population between 30% and 70%,
type viability of 90%, max win-rate for Pokémons and/or teams is 55% and
Sleep and Weather effects must be present at least in 10% of teams used.
The configuration language is compiled for a data structure for the VGC
framework.

The size of the Pokémon Roster and Move Roster will have
a large impact on the challenge difficulty. Since the original
official Pokémon Roster had 151 species, this should be an
initial benchmark for the challenge. In the same fashion the
size of the move roster should be at least 165. We propose an
average of 10 possible moves for each Pokémon template.

V. FINAL DISCUSSION

In this work, we formalize the model and evaluation method
of an AI meta-game balance competition where a balancing
agent must generate or re-adjust the present roster of available
Pokémons to players to make the viable team-building strate-
gies diverse enough to satisfy human players. We foresee an
agent that achieves a balance by generating several strategies
compatible with team building assessment, while, at the same
time, ensures there is no single dominant strategy. Not merely
are the multiple proposed tracks complex by themselves,
but the challenge of being able to solve them requires task
coordination since they are interdependent. This challenge
may be interesting for other domains, with special interest
to the automatic game design research field. Our engine and
competition proposal may bring a new benchmark and new

solutions for this type of challenge and inspire others to
develop new benchmarks for this type of competition.

Exploring the precise equilibrium of factors that makes
humans being engaged in a competitive scenario, allowing to
model a more accurate balance metric function for the game
balance agent would be a future interesting line of research.

We plan to run the competition at an academic conference
like the future CoG 2022 edition. Baseline solutions are
necessary for participants to measure the quality of their agents
with respect to baseline results, and we plan on communicating
such developments in the near future. We believe fields like
imperfect information games, multi-objective optimisation and
evolutionary game theory will guide us in the right research
direction. The developed open-source implementation can be
found at https://gitlab.com/DracoStriker/pokemon-vgc-engine.

REFERENCES

[1] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray,
C. Olsson, J. W. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with large scale deep reinforcement
learning,” ArXiv, vol. abs/1912.06680, 2019.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[3] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
arXiv preprint arXiv:1911.08265, 2019.

[4] M. Moravčík, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker,” Science, vol. 356,
no. 6337, pp. 508–513, 2017.

[5] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, 2018.

[6] A. K. Hoover, J. Togelius, F. Ri-choux, J.-H. Seok, S. Temsiririrkkul,
, and A. Zook, “Which games should we (ai) explore
next?” Artificial General Intelligence in Games: Where Play
Meets Design and User Experience, vol. 130, no. 6, pp.
17–19, 2019. [Online]. Available: https://shonan.nii.ac.jp/docs/
1230d7e76d0ab68ce19904c614748871f26759db.pdf

[7] T. P. C. TPC, “2020 pokémon video game championships (vgc)
format rules,” Web: https://www.pokemon.com/us/pokemon-news/
2020-pokemon-video-game-championships-vgc-format-rules/, 2020,
accessed: 2021-03-18.

[8] M. Čertický, D. Churchill, K. Kim, M. Čertický, and R. Kelly, “Star-
craft ai competitions, bots, and tournament manager software,” IEEE
Transactions on Games, vol. 11, no. 3, pp. 227–237, 2019.

[9] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Tha-
wonmas, “Fighting game artificial intelligence competition platform,” in
2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE),
2013, pp. 320–323.

[10] A. Dockhorn and S. Mostaghim, “Introducing the hearthstone-ai com-
petition,” arXiv preprint arXiv:1906.04238, 2019.

[11] R. M. Jakub Kowalski, “Strategy card game ai competition cog 2019,”
Web: https://jakubkowalski.tech/Projects/LOCM/COG19/, 2019.

[12] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and
T. Schaul, “General video game ai: Competition, challenges, and oppor-
tunities,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 4335–4337.

[13] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M.
Lucas, “General video game ai: A multitrack framework for evaluating
agents, games, and content generation algorithms,” IEEE Transactions
on Games, vol. 11, no. 3, pp. 195–214, 2019.

[14] T. Schaul, “A video game description language for model-based or inter-
active learning,” in 2013 IEEE Conference on Computational Inteligence
in Games (CIG), 2013, pp. 1–8.

[15] A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
video game level generation,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016, ser. GECCO ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
253–259. [Online]. Available: https://doi.org/10.1145/2908812.2908920

[16] A. Khalifa, M. C. Green, D. Perez-Liebana, and J. Togelius, “General
video game rule generation,” 2017 IEEE Conference on Computational
Intelligence and Games (CIG), Aug 2017. [Online]. Available:
http://dx.doi.org/10.1109/CIG.2017.8080431

[17] E. Piette, D. Soemers, M. Stephenson, C. Sironi, M. Winands, and
C. Browne, “Ludii - the ludemic general game system,” in ECAI 2020
: 24th European Conference on Artificial Intelligence, ser. Frontiers
in Artificial Intelligence and Applications, G. De Giacomo, A. Catala,
B. Dilkina, M. Milano, S. Barro, A. Bugarín, and J. Lang, Eds., vol. 325.
Netherlands: IOS Press, 2020, pp. 411–418, 24th European Conference
on Artificial Intelligence, ECAI 2020 ; Conference date: 29-08-2020
Through 05-09-2020. [Online]. Available: http://www.ecai2020.eu

[18] M. Stephenson, Éric Piette, D. J. N. J. Soemers, and C. Browne, “Ludii
as a competition platform,” 2019.

[19] Zarel, “Pokémon showdown,” Web: https://pokemonshowdown.com/,
2019.

[20] coyotte508, “Pokémon online,” Web: http://pokemon-online.eu/, 2019.
[21] D. Simões, S. Reis, N. Lau, and L. P. Reis, “Competitive deep

reinforcement learning over a pokémon battling simulator,” in 2020
IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), 2020, pp. 40–45.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[23] S. Lee and J. Togelius, “Showdown ai competition,” in 2017 IEEE
Conference on Computational Intelligence and Games (CIG), Aug 2017,
pp. 191–198.

[24] A. Alfonso, “Pokémon battle,” Web: https://pokemon-battle.herokuapp.
com/, 2019.

[25] A. Kalose, K. Kaya, and A. Kim, “Optimal battle strategy in poke-
mon using reinforcement learning,” Web: https://web.stanford.edu/class/
aa228/reports/2018/final151.pdf, 2018.

[26] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[27] S. Charde, “Predicting pokémon battle winner using machine learning,”
Submitted to conference. Web: shorturl.at/kGRS3, 2019.

[28] D. Simões, N. Lau, and L. P. Reis, “Mixed-policy asynchronous
deep q-learning,” in ROBOT 2017: Third Iberian Robotics Conference,
A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira, Eds.
Springer International Publishing, 2018, pp. 129–140.

[29] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48.
New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1928–1937.
[Online]. Available: http://proceedings.mlr.press/v48/mniha16.html

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[31] M. Bowling, “Convergence and no-regret in multiagent learning,” in
Proceedings of the 17th International Conference on Neural Information
Processing Systems, ser. NIPS’04. Cambridge, MA, USA: MIT Press,
2004, pp. 209–216.

[32] S. Abdallah and V. Lesser, “A multiagent reinforcement learning al-
gorithm with non-linear dynamics,” Journal of Artificial Intelligence
Research, vol. 33, pp. 521–549, 2008.

[33] D. Huang and S. Lee, “A self-play policy optimization approach to
battling pokémon,” in 2019 IEEE Conference on Games (CoG). IEEE,
2019, pp. 1–4.

[34] Pykalitics, “Pykalitics,” Web: https://www.pikalytics.com/, 2017.
[35] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical

reinforcement learning,” 2018.

