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Abstract—Recently, the seminal algorithms AlphaGo and Al-
phaZero have started a new era in game learning and deep
reinforcement learning. While the achievements of AlphaGo
and AlphaZero – playing Go and other complex games at
super human level – are truly impressive, these architectures
have the drawback that they are very complex and require
high computational resources. Many researchers are looking
for methods that are similar to AlphaZero, but have lower
computational demands and are thus more easily reproducible.
In this paper, we pick an important element of AlphaZero – the
Monte Carlo Tree Search (MCTS) planning stage – and combine
it with reinforcement learning (RL) agents. We wrap MCTS for
the first time around RL n-tuple networks to create versatile
agents that keep at the same time the computational demands
low. We apply this new architecture to several complex games
(Othello, ConnectFour, Rubik’s Cube) and show the advantages
achieved with this AlphaZero-inspired MCTS wrapper. In par-
ticular, we present results that this AlphaZero-inspired agent is
the first one trained on standard hardware (no GPU or TPU) to
beat the very strong Othello program Edax up to and including
level 7 (where most other algorithms could only defeat Edax up
to level 2).

I. INTRODUCTION

A. Motivation

In computer science, game learning and game playing
are interesting test beds for strategic decision making done
by computers. Games usually have large state spaces, and
they often require complex pattern recognition and strategic
planning capabilities to decide which move is the best in a
certain situation. If an algorithm is able to learn a game (or,
even better, a variety of different games) just by self-play,
given no other knowledge than the game rules, it is likely
to perform also well on other problems of strategic decision
making.

With their seminal papers on AlphaGo [1], AlphaGo
Zero [2] and AlphaZero [3], Silver et al. opened a new door
in game learning by presenting self-learning algorithms for
the game of Go (which was considered to be unattainable
for computers prior to theses publications). As we all know,
all these algorithms were able to beat the human Go world
champion Lee Sedol.

However, the full algorithms AlphaGo or AlphaZero require
huge computational resources in order to learn how to play
the game of Go at world-master level. It is the purpose of this
work to investigate whether some of the important elements of

AlphaZero can already reach decent advances in game learning
with much smaller computational efforts. For this purpose,
we study several games – namely Othello, ConnectFour and
Rubik’s Cube – that have a lower complexity than Go yet
are not easy to master for both humans and game learning
algorithms. The goal is to deliver not only agents with average
game playing strength but agents that play near-perfect on that
games. We will show that this can be achieved for Othello and
ConnectFour and, to some extent, also for Rubik’s Cube.

In this work, we pick an element of AlphaZero (here:
the MCTS planning stage) and combine it with RL agents.
Here, we wrap MCTS for the first time around TD-n-tuple
networks, but the same technique could be applied to all
types of RL agents. We apply this new architecture with
low computational demands to several complex games and
show that great advantages are achieved with this AlphaZero-
inspired MCTS wrapper.

B. Related work

The seminal papers of Silver et al. on AlphaGo and
AlphaZero [1], [3] have stirred the interest of many re-
searchers to achieve similar things with smaller hardware
requirements and/or fewer training cycles. Thakoor et al. [4]
already provided 2017 a general AlphaZero implementation
in Python with less computational demands than the original.
But even their architecture requires 3 days of training on a
specialized cloud computing service (Google Compute Engine
with GPU support). Several works of Wang et al. [5], [6],
[7] focus on different aspects of the AlphaZero architecture:
alternative loss functions, hyperparameter tuning and warm-
start enhancements. They test these aspects on smaller games
like 6x6 Othello or 5x5 ConnectFour. Young et al. [8] report on
an AlphaZero implementation applied to ConnectFour. Here,
training took between 21 and 77 hours of GPU time. The work
of Chang et al. [9] covered several AlphaZero improvements
applied to 6x6 Othello.

Recently in 2021, Norelli and Panconesi [10] came up with
a very interesting paper that is close to our work: They pursue
as well the goal to set up an AlphaZero-inspired algorithm at
much lower cost than the original AlphaZero [3]. The agent
in [10] is trained solely by self-play, is able to play 8x8 Othello
and defeat the strong Othello program Edax [11] up to level
10. Although much less computationally demanding than the
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original AlphaZero [3], their training time took roughly one
month on Colaboratory, a free Google cloud computing service
offering GPUs and TPUs.

Apart from Norelli and Panconesi [10], there are only
few works on Othello game learning that actually benchmark
against Edax: Liskowski et al. [12] presented in 2018 an agent
obtained by training a convolutional neural network (CNN)
with the help of a database of expert moves. Their agent could
defeat Edax up to and including level 2.

Our work presented here is based on an earlier Bachelor
thesis [13] published in 2020 (but only in German); it presents
an n-tuple RL agent trained in 1.8 hours on standard hardware
(no GPU) that can defeat Edax up to and including level 7. See
Sec. V (Discussion) for further comparison between Norelli
and Panconesi [10] and our work.

N-tuple networks, which are an important building block
of our approach, have shown to work well in many games,
e.g., in ConnectFour [14], [15], Othello [16], EinStein würfelt
nicht [17], 2048 [18], SZ-Tetris [19] etc. Other function
approximation networks (deep neural networks or other) could
be used as well in AlphaZero-inspired reinforcement learning,
but n-tuple networks have the advantage that they can be
trained very fast on off-the-shelf hardware.

The algorithm presented in this paper is implemented in the
General Board Game (GBG) learning and playing framework
[20], [21], which was developed for education and research in
AI. GBG allows applying the new algorithm easily to a variety
of games. GBG’s open source code is available on GitHub1.

A work related to GBG [20], [21] is the general game
system Ludii [22]. Ludii is an efficient general game system
based on a ludeme library implemented in Java, allowing to
play as well as to generate a large variety of strategy games.
Currently, all AI agents implemented in Ludii are tree-based
agents (MCTS variants or AlphaBeta). GBG, on the other
hand, offers the possibility to train RL-based algorithms on
several games.

The main contributions of this paper are as follows: (i) it
shows for the first time – to the best of our knowledge – an
AlphaZero-like coupling between n-tuple networks and MCTS
planning; (ii) an AlphaZero-inspired solution with largely
reduced computational requirements; (iii) very good results
on Othello, ConnectFour and 2x2x2 Rubik’s Cube.

The rest of this paper is organized as follows: Sec. II details
the algorithmic building blocks and methods of our approach.
Sec. III describes the experimental setup, the games and the
evaluation methods. Sec. IV shows the results on the three
games: quality achieved, interpretation, computation times.
Sec. V discusses the results in comparison with other research
and Sec. VI concludes.

II. ALGORITHMS AND METHODS

A. Algorithm Overview
The most important task of a game-playing agent is, given

an observation or game state st at time t, to propose a

1https://github.com/WolfgangKonen/GBG

good next action at from the set of actions available in st
(Fig. 1). TD-learning uses the value function V (st), which is
the expected sum of future rewards when being in state st.

It is the task of the agent to learn the value function V (s)
from experience (by interacting with the environment). In
order to do so, it usually performs multiple self-play training
episodes until a certain training budget is exhausted or a
certain game-playing strength is reached.

Our base RL algorithm TD-FARL is described in detail
in [23], [24] and is partly inspired by Jaskowski et al. [25],
van der Ree et al. [26] and partly from our own experience
with RL-n-tuple training. The key elements of the new RL-
logic – as opposed to our previous RL algorithms [14], [27] –
are N-tuple systems, temporal coherence learning (TCL) [28]
and final adaptation RL (FARL) [23], [24]. The last element
(FARL) was necessary to create an algorithm that works
successfully in various N -player games with arbitrary N [24],
[26].

Despite being successful on a variety of games [23], [24],
this base algorithm shares one disadvantage with other deep
learning algorithms that are only value-based: they base their
decision on the value of the current state-action pairs. They
have no planning component, no what-if scenarios to think
about further consequences, like possible counter-actions of
the other player(s), further own actions and so on.

action at

environment

observation st
reward rt

MCTS wrapper

RL agent

Figure 1. Reinforcement learning with MCTS wrapper: The RL agent with
MCTS wrapper observes a certain state st and reward rt from the game
environment and predicts the next action at.

This is where AlphaZero’s MCTS-trick comes into play:
Silver et al. [1], [2] combine a deep learning RL agent with
an MCTS wrapper (Fig. 1) to introduce such a planning com-
ponent. They do this throughout the whole training procedure,
which is better for the overall performance but which is also
very computationally demanding. In this work, we take a
simpler approach: we first train our RL agent, a TD n-tuple
network, and then use the MCTS wrapping only at prediction
time.

B. MCTS Wrapper

In theory, applying the Minimax algorithm to assess the
entire game tree leads to an optimal game strategy for
deterministic 2-player games with perfect information [29].
However, such brute-force-like algorithms may quickly reach
their limits in practice for very large game trees - even
optimizations like alpha-beta pruning can only counteract this
to a limited extent.

https://github.com/WolfgangKonen/GBG


Assuming the UCT variant of the Monte Carlo tree search,
the probability of predicting an optimal move converges to
100% in the limit of an infinite number of iterations [30]. If we
limit the iterations to a fixed size, we approximate optimality
only but have a fixed runtime.

Therefore, with an MCTS, promising results can be ex-
pected under reasonable computational requirements, given the
number of MCTS iterations is correctly balanced.

Another advantage of MCTS is that it can be interrupted
prematurely and still deliver valuable results as a so-called
anytime algorithm [31]. This property is beneficial when
using hardware with limited computing power, especially with
games that impose a move-based time limit. Thus, even if
the available computing time is not sufficient to carry out all
planned MCTS iterations, it is still possible to stop the search
after any iteration and predict the most promising move at that
time.

The phases of MCTS usually consist of four consecu-
tive steps: Selection, expansion, simulation, and backpropa-
gation [31]. The following child selection policy, which is the
one used by Silver et al. [2] in AlphaGo Zero, is also the one
that we have implemented in our MCTS wrapper for the same
purpose:

at = arg max
a∈A(st)

(
Q(st, a)

N(st, a)
+ U(st, a)

)
(1)

U(s, a) = cpuctP (s, a)

√
ε+

∑
b∈A(s)N(s, b)

1 +N(s, a)
(2)

Here, Q(s, a) is the accumulator for all backpropagated
values (as detailed in Algorithm 1 below) that arrive along with
branch a of node R that carries state s. Likewise, N(s, a) is
the visit counter and P (s, a) the prior probability. A(s) is the
set of actions available in state s. ε is a small positive constant
for the special case

∑
bN(s, b) = 0: It guarantees that in this

special case the maximum of U(s, a) is given by the maximum
of P (s, a). The prior probabilities P (s, a) are obtained by
sending the values of all available actions a ∈ A(s) through
a softmax function.

According to Silver et al. [2], the above child selection
policy is a variant of the PUCB (”Predictor + UCB”) algorithm
presented by Rosin [32]. Furthermore, the latter is a modifi-
cation of the bandit algorithm UCB1, extending it with the
behavior to also consider the recommendations of a predictor.
UCB1 is also the basis of the previously mentioned algorithm
UCT (UCB applied to trees) by Kocsis and Szepesvári [30].

Our implementation of a Monte Carlo tree search iteration is
illustrated in Algorithm 1. It performs a single iteration of the
Monte Carlo tree search for a given node. The numerical return
value approximates how valuable it is to choose an action that
leads to this node. Since this assessment corresponds to the
view of the previous player, for 2-player games, the algorithm
negates the returned values (κ = −1).

If the node represents a game-over state, then the conse-
quence of choosing this node is known and does not need to

Algorithm 1. MCTSITERATION: This recursive algorithm is applicable to 1-
or 2-player games. It performs a single iteration of a Monte Carlo tree search,
starting from root node R carrying state s.

1: function MCTSITERATION(NODE R)
2: κ = (−1)N−1 . N : number of players
3: if ISGAMEOVER(s) then
4: return κ ∗ FINALGAMESCORE(s)

5: if R.EXPANDED = FALSE then
6: (V,p)← f(s) . f : approximator network
7: P (s, ·)← p . prior probabilities given by f
8: R.EXPANDED ← TRUE
9: return κ ∗ V

10:
11: (a, C)← SELECTCHILD(R) . use Eq. (1) to select
12: . action a and child C
13: Vchild ← MCTSITERATION(C)
14: Q(s, a)← Q(s, a) + Vchild
15: N(s, a)← N(s, a) + 1
16:
17: return κ ∗ Vchild

be approximated. In this case, the final game score gives the
evaluation value to propagate back.

Reaching a non-expanded node is also a termination con-
dition. In this case, the approximator function f (usually the
wrapped RL agent of Fig. 1) approximates the value V of
the corresponding node together with its action probabilities
p (line 6). Afterward, the node is marked as expanded, and
its approximated value is propagated back.

SELECTCHILD is used to select a child node based on the
PUCB variant of Eq. (1) if no previous termination condition
occurred. To determine the selected child node’s value, it
serves as input to another recursive call of the MCTSITERA-
TION algorithm. On return from the recursive call, the returned
value Vchild is accumulated to Q(s, a) (line 14), and the visit
count N(s, a) is incremented.

Our Monte Carlo tree search implementation first performs
a certain number of MCTS iterations starting from the node
corresponding to the current game state in a concrete match.
Then it decides on the action that leads to the most frequently
visited child node.

Furthermore, our tree search is optimized to reuse the
previously built search tree across the moves of a game
whenever possible, i.e., when a node corresponding to the
current game state is already present in the search tree of
the previous move. This optimization avoids performing su-
perfluous MCTS iterations that merely determine previously
known information. Instead, it directly builds on already
known knowledge, resulting in a more extensive search tree
with more information.

C. N-Tuple Systems

N-tuple systems coupled with TD were first applied to
game learning by Lucas in 2008 [16], although n-tuples
were already introduced in 1959 for character recognition



game length n position m k weights percent active
Othello 7 4 2 · 100 3,276,800 51%
ConnectFour 8 4 2 · 70 9,175,040 8%
2x2x2 Rubik’s 7 {3, 7} 60 3,720,780 31%
3x3x3 Rubik’s 7 {2, 3, 8, 12} 120 46,563,392 22%

Table I
N-TUPLE SYSTEMS USED IN THIS WORK. PARAMETERS n, m AND k ARE EXPLAINED IN THE MAIN TEXT. THE NUMBER OF WEIGHTS IS 47 · 200

(OTHELLO) AND 48 · 140 (CONNECTFOUR). FOR 2X2X2 RUBIK’S CUBE, EACH 7-TUPLE HAS EITHER 3 OR 7 POSITIONAL VALUES, DEPENDING ON THE
CELL LOCATION. THUS, THE NUMBER OF WEIGHTS DEPENDS ON THE CELL LOCATION. SINCE NOT EVERY WEIGHT REPRESENTS A REACHABLE

POSITION, THE NUMBER OF ACTIVE WEIGHTS IS SMALLER, AS GIVEN BY THE PERCENTAGE IN THE LAST COLUMN.

purposes [33]. The remarkable success of n-tuples in learning
to play Othello [16] motivated other authors to benefit from
this approach for a number of other games. The main goal
of n-tuple systems is to map a highly non-linear function in
a low dimensional space to a high dimensional space where
it is easier to separate ’good’ and ’bad’ regions. This can
be compared to the kernel trick of support-vector machines
(SVM). An n-tuple is defined as a sequence of n cells of the
board. Each cell can have m positional values representing
the possible states of that cell. Therefore, every n-tuple will
have a (possibly large) look-up table indexed in form of an n-
digit number in base m. Each entry carries a trainable weight.
An n-tuple system is a system consisting of k n-tuples. Tab. I
shows the n-tuple systems that we use in this work. Each time
a new agent is constructed, all n-tuples are formed by random
walk. That is, all cells are placed randomly with the constraint
that each cell must be adjacent to at least one other cell in the
n-tuple [21, Appendix C].

D. Temporal Coherence Learning (TCL) and FARL

The TCL algorithm developed by Beal and Smith [28] is an
extension of TD learning. It replaces the global learning rate
α with the weight-individual product ααi for every weight wi.
Here, the adjustable learning rate αi is a free parameter set by
a pretty simple procedure: For each weight wi, two counters
Ni and Ai accumulate the sum of weight changes and the
sum of absolute weight changes. If all weight changes have
the same sign, then αi = |Ni|/Ai = 1, and the learning rate
stays at its upper bound. If weight changes have alternating
signs, then the global learning rate is probably too large. In
this case, αi = |Ni|/Ai → 0 for t → ∞, and the effective
learning rate will be largely reduced for this weight.

More details on how TCL is coupled to TD n-tuple networks
are found in [14]. It was shown in [14] that TCL leads to faster
learning and higher win rates for the game ConnectFour.

We also use Final Adaptation RL (FARL) for TD learning,
as described in more detail in our previous work [23], [24].

III. EXPERIMENTAL SETUP

A. The Games

1) Othello: (Reversi) is a well-known board game with
quite simple rules yet requiring complex strategies to play
strong. Fig. 2(a) shows a typical game position. The regular
8x8 Othello has 1028 states and an average branching factor

(a) (b)

Figure 2. (a) Othello game state. The black cell with a red outline marks
the last move of Black. It is White’s turn to choose one of the available
actions marked by cells with a green border. These actions capture one or
more black pieces, which are then flipped to white. (b) ConnectFour game
state. It is Red’s turn, and he has to place hispiece in the only free column.
Subsequently, Yellow wins by reaching Four in a Row. Numbers show cell
coding: 1 and 2 for players’ pieces, 3: empty and reachable, 0: empty, but
not reachable (in next move).

(a) (b)

Figure 3. (a) Scrambled 3x3x3 Rubik’s Cube. (b) 2x2x2 cube (pocket cube)
in the middle of a twist.

of 10. It is an unsolved game (no perfect winning strategy is
known).

2) ConnectFour: (Four in a Row) is another board game
with quite simple rules. Fig. 2(b) shows a typical end game
position. The regular 6x7 ConnectFour has 1012 states and a
branching factor ≤ 7. It is a solved game: The 1st player wins
if playing perfectly.

3) Rubik’s Cube: is a famous mathematical puzzle where
the goal is to bring an arbitrary scrambled cube (see Fig. 3)
by twists into the solved position where each cube face is of



unique color. The regular 3x3x3 cube has 4.3 ·1019 states and
a branching factor of 18. The 2x2x2 cube has 3.6 · 106 states
and a branching factor of 9.

B. Common Settings

We use for all our experiments the same RL agent based on
n-tuple systems and TCL. Only its hyperparameters are tuned
to the specific game, as shown below. We refer to this agent
as TCL-base whenever it alone is used for game playing. If
we wrap this agent by an MCTS wrapper with a given number
of iterations, then we refer to this as TCL-wrap.

The hyperparameters for each game were found by manual
fine-tuning. This was not too complicated because only a few
parameters needed to be changed from their default values.
The chosen n-tuple configuration is given in Tab. I, and the
remaining parameters are as follows:
• Othello: learning rate α = 0.2, TCL activated (with

default settings), eligibility rate λ = 0.5, exploration rate
ε = 0.2→ 0.1, 250,000 training episodes.

• ConnectFour: learning rate α = 3.7, TCL activated
(with default settings), eligibility λ = 0.0, exploration
ε = 0.1→ 0.0, 6,000,000 training episodes.

• Rubik’s Cube: learning rate α = 0.25, TCL activated
(with default settings), eligibility λ = 0.0, exploration
ε = 0.0, 3,000,000 training episodes.

IV. RESULTS
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Figure 4. Different Othello agents playing against Edax. TCL-wrap: TCL
coupled with MCTS wrapper (10,000 iterations); TCL-base: TCL alone;
MCTS-10k: MCTS alone with 10,000 iterations. Error bars show the fluc-
tuations (a) of 20 TCL agents trained with different random n-tuples in the
TCL cases and (b) of 20 repeated runs in the MCTS case. Each agent plays
in both roles (1st and 2nd player).

A. Othello

It is not too difficult in Othello to reach with game learning
algorithms a medium playing strength, i. e. a strength where
simple heuristic players are beaten [16], [7]. But it is very
difficult to beat the very strong Othello playing program
Edax [11]. Edax has a configurable playing strength (level,
depth) between 0 and 60. Only a few Othello agents can beat
Edax beyond level 2.

We compare our agents with Edax at different levels. Since
all agents (Edax, TCL-base and TCL-wrap) are deterministic
move predictors, repeated evaluation runs with the same pair
of agents always yield the same results and cannot be used
to collect statistics. We use the following procedure to get
statistically sound results: We draw 20 different random n-
tuple configurations (random walk, see Sec. II-C) and train for
each configuration a separate TCL-base agent. As a byproduct,
this will also show that random n-tuple configuration does not
lead to too large variations.

Fig. 4 shows the results obtained: Both MCTS and TCL-
base cannot defeat Edax at level 2 and beyond (their win rates
are lower than 50% from level 2 on). The situation changes
dramatically as soon as we wrap TCL-base by MCTS: TCL-
wrap defeats Edax up to level 7 and has a win rate above 25%
for levels 8 and 9.

(a) (b)

Figure 5. Tactics of Edax in Othello: (a) Move 48 in a game TCL-base
(Black) vs. Edax level 7 (White): It is Black’s turn, and Edax forces Black
into disadvantageous moves that allow White to capture the corners. TCL-wrap
will avoid such disadvantageous positions. (b) Move 57 in a game TCL-wrap
(Black) vs. Edax level 8 (White): Now it is White’s turn, and although Black
has the current majority of pieces, White will eventually win because Black
has to pass and White moves three times in a row.

Interpretation: What are the reasons for opponents to win
or lose in Othello against Edax? – To investigate this, we
analyze specific Othello episodes: When Edax plays at level
7, it has advanced tactics that narrow the range of possible
actions for the opponent (Fig. 5(a)): If Edax (2nd) plays against
opponent TCL-base (1st), Edax forces TCL-base towards the
end of the episode to play disadvantageous moves. If we now
replace the opponent (1st) with TCL-wrap, it avoids these
traps: The planning stage of TCL-wrap helps to foresee the
disadvantageous positions when they are some moves ahead;
now TCL-wrap finds other moves to avoid them and is thus
not forced into the disadvantageous positions.

At level 8 or higher, Edax shows another tactic: It plays
in such a way that the last 2-4 moves are pass moves for
the opponent (Fig. 5(b)): Since the opponent has no available
action at its disposal, it is forced to pass the move right to
Edax again. During the very last moves of an episode, Edax
will thus gain the majority of pieces. Currently, TCL-wrap
is not able to avoid these pass situations, at least not in the
majority of the episodes played.



W/T/L 2nd player won games rate
TCL-wrap AB-DL TCL-base MCTS

1st

TCL-wrap 99/0/1 100/0/0 100/0/0 66.3%
AB-DL 100/0/0 100/0/0 100/0/0 64.9%
TCL-base 100/0/0 91/2/7 100/0/0 49.0%
MCTS 1/2/97 17/3/80 97/2/1 19.8%

Table II
RESULTS OF A CONNECTFOUR TOURNAMENT WITH 4 AGENTS. SHOWN IS THE W/T/L (WIN/TIE/LOSS) COUNT OF THE 1st (ROW) PLAYER WHEN

PLAYING 100 EPISODES AGAINST THE 2nd (COLUMN) PLAYER. AGENTS ARE RANKED BY THEIR OVERALL RATE OF GAMES WON (LAST COLUMN). THE
COLORED AND BOLD NUMBERS SHOW REMARKABLE IMPROVEMENTS OF TCL-wrap OVER TCL-base.

B. ConnectFour

ConnectFour is a non-trivial game that is not easy to master
for humans. However, its medium-size complexity allows
for very strong tree-based solutions when combined with a
pre-computed opening book. These near-perfect agents are
termed AB and AB-DL since they are based on alpha-beta
search (AB) that extends the Minimax algorithm by efficiently
pruning the search tree. Thill et al. [15] were able to implement
alpha-beta search for ConnectFour in such a way that it plays
near-perfect: It wins all games as 1st player and wins very
often as 2nd player when the 1st player makes a wrong move.
AB and AB-DL differ in the way they react to losing states:
While AB just takes a random move, AB-DL searches for the
move, which postpones the loss as far (as distant) as possible
(DL = distant losses). It is tougher to win against AB-DL since
it will request more correct moves from the opponent and will
very often punish wrong moves.

We perform a tournament with the following 4 agents:

• TCL-wrap: MCTSWrapper[TCL-base] (iter=1,000,
cPUCT =1.0, unlimited depth),

• TCL-base: TCL alone,
• AB-DL: Alpha Beta with Distant Losses,
• MCTS: MCTS(UCT, random playouts, iter=10,000,

treeDepth=40)

● ●
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Figure 6. The effect of MCTS wrapping on ConnectFour. Shown are the
averages from 5 runs, where each run consists of 25 competition episodes
MCTS (1st) vs. opponent (2nd). The opponents are a) TCL-wrap: TCL
wrapped by MCTS wrapper with iterMWrap iterations; b) AB-DL: Alpha-
Beta agent with distant losses; c) TCL-base: TCL without MCTS wrapper.

The results are shown in Tab. II and can be described as
follows: TCL-wrap and AB-DL win nearly all their games
when playing first (ConnectFour is a theoretical win for the
1st player). TCL-base (1st) wins against AB-DL (2nd) the
majority of its games (91%), but not all. If we enhance TCL-
base by MCTS wrapper, the win rate of TCL-wrap rises to
fantastic 99%, so it avoids 8/9 of the former TCL-base losses.

MCTS as the weakest agent in the tournament, wins as 1st

player most of its games (97%) against TCL-base (2nd), but
it predominantly loses against TCL-wrap and AB-DL (2nd).
TCL-wrap as 2nd player is in this respect significantly stronger
than AB-DL (97% vs. 80% win rate, resp.), which leads
for TCL-wrap to a higher total rate of 66.3% won games
as compared to AB-DL (64.9%). Besides that, the total won
games rate 66.3% is a big jump forward when compared to
the total won game rate 49% of TCL-base.

Interpretation: MCTS plays differently, perhaps more sur-
prising, than near-optimal agents. Since TCL-base was trained
on a near-optimal agent (itself), it has never seen the ’surpris-
ing’ moves of MCTS and will probably often react wrongly
on that moves. Thus, TCL-base loses most of its games when
playing 2nd. If we now add with MCTS wrapper a planning
component to TCL-base, then TCL-wrap can find better re-
sponses to the ’surprising’ moves, and it can better exploit the
occasional wrong moves of MCTS. As a consequence, it wins
most of the episodes.

Fig. 6 shows the results of MCTS-wrapping in ConnectFour
as a function of MCTS wrapper iterations. Even a small
amount of iterations (50-100) already leads to a TCL-wrap
win rate of > 80%. With 500 iterations or more, TCL-wrap
achieves a win rate near 100%.

C. Rubik’s Cube
We investigate two variants of Rubik’s Cube: 2x2x2 and

3x3x3. We trained TCL agents by presenting them cubes
scrambled with up to pmax twists where pmax = 13 for 2x2x2
and pmax = 9 for 3x3x3. This covers the complete cube space
for 2x2x2, but only a small subset for 3x3x3, where God’s
number [34] is known to be 20. We evaluate the trained agents
on 200 scrambled cubes that are created by applying a given
number p of scrambling twists to a solved cube. The agent
now tries to solve each scrambled cube. A cube is said to be
unsolved if the agent cannot reach the solved cube in eE = 20
steps. More details on our method are found in [35].
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Figure 7. The effect of MCTS wrapping on Rubik’s Cube. Shown are the
averages from 4 runs, where each run evaluates the ability of the agents to
solve a large set of scrambled cubes (a) as a function of MCTS iterations:
2x2x2: 600 cubes scrambled with either 11, 12 or 13 twists; 3x3x3: 600 cubes
scrambled with either 7, 8 or 9 twists; (b) as a function of scrambling twist:
200 scrambled cubes for each twist number.

Here we are interested in the relative strength of agents
with and without MCTS-wrapping. The results are shown in
Fig. 7: While TCL-base could only solve 75% (2x2x2) or 25%
(3x3x3) of the scrambled cubes, resp., the MCTS-wrapped
agent TCL-wrap could either fully solve the problem (2x2x2)
or at least double or triple the percentage of solved cubes
(3x3x3).

Interpretation 2x2x2: Since the solved-rate of TCL-base
is only 75%, the value function V (s) does not predict for
every state s the right action (resulting in a short path to
the solved cube). However, if we add the planning stage of
MCTS-wrapper, then the action with the highest V (s) after a
few ’what-if’ steps is selected. This is sufficient to boost the
solved-rate to 100% after 200 or more MCTS-iterations.

Interpretation 3x3x3: The agent has seen during training
only a small subset of cubes with up to 9 scrambling twists.
Therefore, the solved-rates for p = 8, 9 are much lower in the
TCL-base case because it is very likely that the cube ’escapes’
with a wrong move into the unknown area of p = 10 or
higher. It is interesting to see that the MCTS planning stage
can double or triple the solved-rate. However, it can not cure

game nag

base
training
time

iMCTS factor
hypothetical
wrapped
training time

Othello 20 1.5 d 10,000 2,575 10.6 years
ConnectFour 10 1.4 d 1,000 850 3.3 years
RubiksCube 5 2.2 h 1,000 770 71 days

Table III
TRAINING TIMES TO TRAIN nag AGENTS WITHOUT AND WITH MCTS

WRAPPING (HYPOTHETICAL) FOR ALL GAMES.

everything since the high branching factor of 18 together with
slight inaccuracies of the value function approximator makes
it likely that even 1000 iterations of MCTS-wrapper do not
explore enough to find the right path.

D. Computation times

The MCTS wrapper for RL agents, as proposed in this
paper, has the advantage that it does not cost any additional
training time since it is an enhancement added after agent
training.

The extra computational resources needed during game play
or evaluation are moderate. This is because there are usually
only a few evaluation episodes (compared to the huge number
of training episodes) and because the MCTS wrapper does not
require too many iterations.

The above advantage becomes more apparent if we compare
the actual TCL-base training times with the would-be training
times if the MCTS planning stage were also used during
training, as shown in Tab. III: The base training time is the time
actually needed to train nag agents without MCTS wrapper.
All computations were done on a single CPU Intel i7-9850H
@ 2.60GHz.2

The wrapped training times are estimated by multiplying the
base training time with factor which is established by running
a few episodes without and with MCTS wrapper doing iMCTS

iterations. This estimate rests on the assumption that a wrapped
agent needs as many training episodes as a base agent. This
assumption is reasonable because the exploration of the state
space normally dictates the number of episodes needed. But it
was not proven empirically because the hypothetical training
times are astronomic: We see from Tab. III that with the same
hardware, many years or at least near 100 days of computation
time would be necessary. Of course, large speed-ups would be
possible if dedicated hardware or parallel execution on many
cores were used, but often this hardware is just not available.

V. DISCUSSION

A. Comparison with Other N-Tuple Research

There are two papers in the game learning literature that
connect n-tuple networks with MCTS: Sironi et al. [36] use
the n-tuple bandit EA to automatically tune a self-adaptive
MCTS. This is an interesting approach but for a completely
different goal and not related to AlphaZero. Chu et al. [17]

2To get a single-agent training time, the base training time has to be divided
by nag which results for example in 1.8 hours training time for one Othello
agent.



use an n-tuple network as a heuristic selector for MCTS in the
game EWN. Although they pursue a similar goal as our work
(’predict with MCTS + n-tuple a good next move’), they follow
a different path since they do not incorporate reinforcement
learning and do not follow the AlphaZero approach.

So – to the best of our knowledge – this work is the first
to couple n-tuple networks with MCTS using the AlphaZero
approach.

B. Comparison with Other RL Research

In this section, we compare our results with other RL
approaches from the literature.

Dawson [37] introduces a CNN-based and AlphaZero-
inspired [2] RL agent named ConnectZero for the game
ConnectFour, against which can be played online. Although
it reaches a good playing strength against MCTS1000, it is
inferior to our AlphaBeta-DL and TCL-wrap: We performed
10 episodes with ConnectZero starting (which is a theoretical
win), but found instead that AlphaBeta playing second won
80% of the episodes and TCL-wrap playing second won
all episodes. This is in contrast to our TCL-base and TCL-
wrap, which win nearly all episodes when starting against
AlphaBeta-DL (see Tab. II).

Concerning the game Othello, there are a number of other
researchers that do RL-based game learning: van der Ree and
Wiering [26] reached in 2013 with their Q-learning agent
against the heuristic player BENCH (positional player) a win
rate of 87%. We reach with both TCL-base and TCL-wrap
a win rate of 100% against BENCH. Liskowski et al. [12]
show in Table IX that their agent wins against Edax up to
and including Edax level 2. We win up to and including Edax
level 7.

In 2021, Norelli and Panconesi [10] obtained with their
system OLIVAW the best Othello results up-to-date: It defeats
Edax up to and including Edax level 10. This is a truly
impressive result, but it also took considerable computational
resources to achieve it: Although much cheaper than Deep-
Mind’s original AlphaZero, they needed an informal crowd
computing project with 19 people for game generation and
then about 30 days to train a single agent on Google Colab-
oratory using GPU and TPU hardware. Thus, fine-tuning of
hyperparameters or ablation studies could not be undertaken.

In our work presented here, we defeat Edax only up to
level 7, but with a much simpler architecture that is trainable
in less than 2 hours on a single standard CPU. It is, on the one
hand, interesting that our architecture, which keeps the costly
MCTS completely out of the training process, can get so far.

On the other hand, there is, of course, a performance gap
to [10], and it would be interesting to investigate which
element of the more complex architecture in [10] is respon-
sible for the performance gain. We see here two hypothetical
candidates: First, including MCTS in the training phase leads
to better positional material in the replay buffer. Second, the
network architecture of OLIVAW uses a Residual Network, a
somewhat reduced version of the original AlphaZero Residual

Network, but still a deeper architecture than our n-tuple
network.

Concerning the puzzle Rubik’s Cube, the pioneering work
of McAleer [38] and Agostinelli [39] in 2018 and 2019 shows
that the 3x3x3 cube can be solved without putting human
knowledge or positional-pattern databases into the agent. They
solve arbitrary scrambled cubes with a method that is partly
inspired by AlphaZero but also contains special tricks for
Rubik’s Cube. The deep network used in [38] had over 12
million weights and was trained for 44 hours on a 32-core
server with 3 GPUs. Our approach can solve the 2x2x2 cube
completely, but the 3x3x3 cube only partly.

VI. CONCLUSION AND FUTURE WORK

We have shown on the three challenging games, Othello,
ConnectFour, and Rubik’s Cube, that an AlphaZero-inspired
MCTS planning stage boosts the performance of TD-n-tuple
networks. Interestingly, this performance boost is even reached
when MCTS is not part of the training stage, which leads
to very large reductions in training times and computational
resources.

The new architecture was evaluated on the three games
without any game-specific changes. We reach perfect play
for ConnectFour and 2x2x2 Rubik’s Cube. For the games
Othello and 3x3x3 Rubik’s Cube, we observe good results
and increased performance compared to our version without
MCTS planning stage, but we do not reach the high-quality
results of Norelli and Panconesi [10] on Othello (beats Edax
level 10 where we reach only level 7) and of Agostinelli,
McAleer et al. [39], [38] on 3x3x3 Rubik’s Cube (they solve
all scrambled cubes while we solve only cubes with up to 9
twists). Both high-performing approaches require considerably
more computational resources.

It is an interesting topic of future research to investigate
which element of the more complex architecture (MCTS in the
training phase or deep residual network for the approximator)
is more relevant to reach these impressive high-quality results.
However, our smaller-sized architecture has the advantage
to allow faster training and more parameter tuning on mid-
complex games with simpler hardware accessible to everyone.

We also plan to extend our MCTS wrapper concept to
non-deterministic games (e.g., EWN, 2048, Blackjack, Poker)
where previous research [40] has shown that plain MCTS
is not sufficient and has to be extended by the Expectimax
approach.
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[Online]. Available: http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.
d/TR-TDgame EN.pdf 2

[28] D. F. Beal and M. C. Smith, “Temporal coherence and prediction decay
in TD learning,” in Int. Joint Conf. on Artificial Intelligence (IJCAI),
T. Dean, Ed. Morgan Kaufmann, 1999, pp. 564–569. 2, 4

[29] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,
ser. Prentice Hall series in artificial intelligence. Englewood Cliffs, N.J:
Prentice Hall, 1995. 2

[30] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
Proceedings of the 17th European Conference on Machine Learning,
ser. ECML’06. Berlin, Heidelberg: Springer-Verlag, 2006, p. 282–293.
[Online]. Available: https://doi.org/10.1007/11871842 29 3

[31] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012. 3

[32] C. D. Rosin, “Multi-armed bandits with episode context,” Annals
of Mathematics and Artificial Intelligence, vol. 61, no. 3, pp. 203–
230, Mar. 2011. [Online]. Available: http://link.springer.com/10.1007/
s10472-011-9258-6 3

[33] W. W. Bledsoe and I. Browning, “Pattern recognition and reading by
machine,” in Proceedings of the Eastern Joint Computer Conference,
1959, pp. 225–232. 4

[34] T. Rokicki, H. Kociemba, M. Davidson, and J. Dethridge, “The diameter
of the Rubik’s cube group is twenty,” SIAM Review, vol. 56, no. 4, pp.
645–670, 2014. 6

[35] W. Konen, “Towards learning Rubik’s cube with n-tuple-based reinforce-
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