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Abstract
Deep Reinforcement Learning (DRL) reaches a superhuman
level of play in many complete information games. The state
of the art search algorithm used in combination with DRL
is Monte Carlo Tree Search (MCTS). We take another ap-
proach to DRL using a Minimax algorithm instead of MCTS
and learning only the evaluation of states, not the policy. We
show that for multiple games it is competitive with the state
of the art DRL for the learning performances and for the con-
frontations.

1 Introduction
Monte Carlo Tree Search (MCTS) (Coulom 2006; Kocsis
and Szepesvári 2006; Browne et al. 2012) and its refine-
ments (Cazenave 2015, 2016; Silver et al. 2016) are the cur-
rent state of the art in complete information games search
algorithms. Historically, at the root of MCTS were ran-
dom and noisy playouts. Many such playouts were neces-
sary to accurately evaluate a state. Since AlphaGo (Silver
et al. 2016) and Alpha Zero (Silver et al. 2018) it is not the
case anymore. Strong policies and evaluations are now pro-
vided by neural networks that are trained with Reinforce-
ment Learning. In AlphaGo and its descendants the policy is
used as a prior in the PUCT bandit to explore first the most
promising moves advised by the neural network policy and
the evaluations replace the playouts. In this paper we advo-
cate that when strong evaluation functions, as those provided
by self trained neural networks, are available, MCTS might
not be the best algorithm anymore. Minimax algorithms are
serious challengers when equipped with a strong evaluation
function. In this article, we make a comparison between
MCTS and a variant of Minimax, called Unbounded Min-
imax, which had never been done before. We also compare
a recent Minimax-based reinforcement learning framework
with the state of the art of reinforcement learning, which also
had not been done before.

The remainder of the paper is organized as follows. The
second section deals with related work. The third section de-
tails search algorithms for complete information games and
some of their optimizations. The fourth section presents the
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two zero learning algorithms we use in this paper and com-
pares them. Section 5 details technical characteristics of the
experiments, such as the representation of particular neural
networks and the used computing resources. Section 6 ex-
perimentally compares the two learning algorithms. Section
7 experimentally compares different search algorithms.

2 Related Work
MCTS has its roots in computer Go (Coulom 2006). It was
theoretically defined with the UCT algorithm (Kocsis and
Szepesvári 2006) that converges to the Nash equilibrium
and uses a well defined bandit, Upper Confidence Bounds
(UCB), which minimizes the cumulative regret at each node
(Auer, Cesa-Bianchi, and Fischer 2002).

Theoretical bandits were soon replaced with empirical
bandits which gave better results. First the RAVE algorithm
(Gelly and Silver 2011) improved greatly on UCT for the
games of Go and Hex (Cazenave and Saffidine 2009). A later
refinement is the GRAVE algorithm that improves on RAVE
for many different games (Cazenave 2015) and is used by
General Game Playing systems such as in Ludii (Browne
et al. 2019).

MCTS was combined with neural networks in AlphaGo,
surpassing professional level in the game of Go (Silver et al.
2016). The search algorithm used in AlphaGo is PUCT, a
bandit that uses the policy given by the neural network to
bias the moves to explore. Later AlphaGo was redesigned
to learn from zero knowledge, leading to AlphaGo Zero and
zero learning (Silver et al. 2017). It was then applied to other
games, namely Shogi and Chess, with the Alpha Zero pro-
gram (Silver et al. 2018).

Many teams have replicated the Alpha Zero approach for
Go and for other games: Elf/OpenGo (Tian et al. 2019),
Leela Zero (Pascutto 2017), Crazy Zero by Rémi Coulom,
KataGo (Wu 2019), Galvanise Zero (Emslie 2019) and
Polygames (Cazenave et al. 2020).

As we use Polygames as a sparring partner we will give
more details about it. Polygames replicated the Alpha Zero
approach and applied it to many games with success. There
are multiple innovations in Polygames. It can train neural
networks with an architecture independent of the size of the
board. To do so it uses a fully convolutional policy, meaning
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that there is no dense layer between the last convolutional
planes and the policy. The value head is also independent
of the size of the board since it uses global average pooling
before the dense layers connected to the evaluation output
neuron. It is much more difficult to train a network for 19×
19 Hex or 13 × 13 Havannah than training it on a smaller
size board. Polygames did succeed in these games by scaling
its neural networks trained on smaller sizes to the difficult
board sizes. It played on the Little Golem game server and
beat the best players at these games that were considered too
difficult for Zero Learning. Other innovations of Polygames
include a pool of neural networks in self play in order to
avoid catastrophic forgetting.

The other kinds of algorithms used in computer games
are the αβ family of algorithms. αβ dominated the field of
complete information games until the advent of MCTS in
2006. Still, many current strong Chess programs use αβ.

There has been a lot of research on the optimizations of
the αβ algorithm (Marsland 1987). Many of them deals with
move ordering since moves ordering can drastically improve
the thinking time of αβ based programs (Knuth and Moore
1975).

The search algorithm we use to learn and play games is
close to Unbounded Best-first Minimax Search (Korf and
Chickering 1996). There is very little study on this algo-
rithm and it seems little or not applied in practice, except in
the work of (Cohen-Solal 2020). In that work, variants and
improvements of Unbounded Minimax are proposed with
several complementary techniques of zero learning that do
not require the use of policies, but still manage to achieve
a high level of play at the game of Hex (size 11 and 13).
In the context of the experiments of (Cohen-Solal 2020),
the proposed approach is the best learning approach not us-
ing a policy: in particular, replacing the used variant of Un-
bounded Minimax, called descent, by Unbounded Minimax,
by αβ or by MCTS (with UCT) gives less good results. A
question then arises, can this approach compete with ap-
proaches using a policy, and in particular the state of the art
based on MCTS with PUCT. In other words, can it gener-
ate strong programs on other games than Hex. Moreover, in
the experiments of that work, another variant of Unbounded
Minimax, called Unbounded Minimax with Safe decision, is
shown best than the Unbounded Minimax or αβ for the con-
frontations (“What is the best search algorithm for winning
a game ?” is a different question of “What is the best search
algorithm to learn faster ?”). However, this comparison is
not done with MCTS and with using strong networks. We
answer these open questions in this article.

3 Search Algorithms
There are many search algorithms for perfect information
games. The two standard algorithms are Monte Carlo Tree
Search and Minimax with alpha-beta pruning. We present in
this section some of their improvements, used in our experi-
ments.

3.1 Iterative Deepening αβ with Move Ordering
Iterative deepening αβ (Fink 1982), denoted ID, is a variant
of Minimax with a maximum thinking time. As long as there

is time left, the search depth is increased by one and a new
search using standard αβ is performed. In order to make the
previous searches profitable, the best move of each state of
the previous search is memorized and is played as the first
move to explore in the next search. This generally decreases
the time for subsequent searches.

3.2 Unbounded Minimax and Safe Unbounded
Minimax

The Unbounded (Best-First) Minimax, denoted UBFM, is a
variant of Minimax which explores the game tree in a non-
homogeneous way. It iteratively extends the best sequence
of actions in the game tree (i.e. it adds at each iteration the
leafs of the principal variation in the game tree). Therefore,
the exploration of the game tree is non-uniform. The best
action sequence generally changes after each extension. In
general, the worse the evaluation function is, the wider the
exploration is. Unbounded Minimax is formally described in
Algorithm 1.

The variant of Unbounded Minimax, named Unbounded
Best-First Minimax with Safe decision, denoted by UBFMs

(Cohen-Solal 2020) performs the same search as the Un-
bounded Minimax (i.e. it builds the same partial game tree).
The difference is in the decision criteria of the action to
be played, after having extended the game tree. To decide
which action to play, instead of choosing the best action (i.e.
the best minimax value action), it chooses the action that
has been selected the most times during the search. It is the
safest action in the sense that the number of times an action
has been selected is the number of times that this action has
been judged superior to other actions.

3.3 Batched Minimax Algorithms
UBFM, UBFMs, and ID have a natural parallelization with
regard to the evaluation of states. It consists of evaluating
the leaves of a node in parallel (by batching them in order
to evaluate them simultaneously by the neural network). For
example, for UBFM, the states a(s) of the foreach block of
Algorithm 1 are batched for evaluation. The batched states
are thus evaluated by only one (neural) evaluation (which
can be executed in parallel on several CPUs or on a GPU). To
differentiate the use of this parallelization technique from its
non-use, we refer to this improvement as the batched version
of the corresponding algorithm.

3.4 First Play Urgency
First-play urgency (FPU) (Wang and Gelly 2007) is an im-
provement of MCTS. With the standard version of MCTS,
there is too much exploration in the states that have been lit-
tle visited (all the children of a state must be explored before
the UCT formula can be used to manage the exploration-
exploitation dilemma). FPU adapts the UCT formula so that
it is applicable even if some children have not been ex-
plored at least once. With FPU, the exploration-exploitation
dilemma is managed from the start. So, as soon as one of the
explored children is very interesting (“urgent”), it is selected
again (even if some children have not been explored at least
once).



3.5 Batched MCTS
MCTS virtual loss (Chaslot, Winands, and van Den Herik
2008; Tian et al. 2019) is a multithread technique of MCTS.
We use it in some experiments of this article (virtual loss
constant is 1) with rollouts played sequentially and states
evaluated in batches of length b after each subsequence of b
rollouts (states are thus evaluated in parallel). In this paper,
this particular case of MCTS virtual loss is called Batched
MCTS.

3.6 Polygames Search Algorithms
Polygames search is based on MCTS with PUCT and First
Play Urgency. In some experiments of this article, we use a
variant of Polygames which we call Polygames with UCT, a
minor modification of the Polygames code, which amounts
to using UCT instead of PUCT with First Play Urgency. We
also test our program against the original Polygames with
heavily trained networks which won computer games com-

Function
unbounded minimax iteration(s)

if terminal(s) then
return f(s)

else
if s /∈ T then

T ← T ∪ {s}
foreach a ∈ actions(s) do

v(s, a)← f (a(s))
else

ab ← best action(s)
v(s, ab)←
unbounded minimax iteration(ab(s))

ab ← best action(s)
return v(s, ab)

Function best action(s)
if first player(s) then

return argmax
a∈actions(s)

v (s, a)

else
return argmin

a∈actions(s)
v (s, a)

Function unbounded minimax(s, τ)
t = time()
while time()− t < τ do
unbounded minimax iteration(s)

return best action(s)

Algorithm 1: Unbounded Minimax algorithm : it com-
putes the best action to play in the generated non-
uniform partial game tree (a(s) : state obtained after
playing the action a in the state s ; v(s, a) : value ob-
tained after playing a in s ; f is the used evaluation func-
tion ; T : keys of the transposition table (global variable)
; τ : search time per action).

petitions.

4 Deep Reinforcement Learning Algorithm
We present in this section the two zero learning frameworks
used in the experiments of this article.

4.1 Polygames Learning Algorithm
Polygames uses its search algorithm, MCTS with PUCT and
First Play Urgency, to generate games, by playing against
itself. It uses the information from these games to update
its neural network, which is used by its search algorithm to
evaluate states by a value and by a policy (i.e. a probability
distribution on the actions to be played in a state). For each
finished game, the network is trained to associate with each
state of the state sequence the result of the end of that game
(which is -1 or 0 or + 1). It is also trained, at the same time,
to associate with each state a particular policy whose prob-
ability of each action is calculated from the number of time
this action is selected in the search from that state.

4.2 Descent Standard Learning Algorithm
The learning framework of (Cohen-Solal 2020) is based on a
variant of Unbounded Minimax called descent, dedicated to
learning, which consists in playing the sequences of actions
until terminal states. The exploration is thus deeper while
remaining a best-first approach. This allows the values of
terminal states to be propagated more quickly to (shallower)
non-terminal states. Unlike Polygames, the learned value of
a state is not the end-game value but the minimax value in
the partial game tree built during the game. This information
is more informative, since it contains part of the knowledge
acquired during the previous games. In addition, contrary to
Polygames, learning is carried out for each state of the par-
tial game tree constructed during the game (not just for the
sequences of states of the played games). As a result, there is
no loss of information: all of the information acquired during
the search is used during the learning process. An additional
advantage is that it generates a much larger amount of data
for training. Thus, unlike the state of the art which requires
to generate games in parallel to build its learning dataset,
this approach does not require the parallelization of games
(and this parallelization is not done in the experiments in
this article). Finally, this approach is optionally based on a
reinforcement heuristic, that is to say an evaluation function
of terminal states more expressive than the classical gain of
a game (i.e. +1 / 0 / −1). The best proposed heuristics in
(Cohen-Solal 2020) are scoring and the depth heuristic (the
latter favoring quick wins and slow defeats).

Note that this approach does not use a policy, so there
is no need to encode actions. Consequently, this avoids the
learning performance problem of neural networks for games
with large number of actions (i.e. very large output size).

5 Technical Details
In this section, we present neural networks used in some of
the experiments of this article and the used computational
resources.



layer # C-network R1-network R2-network
1 conv. + ReLU convolution convolution
· · · conv. + ReLU 2 res. blocks 8 res. blocks
N − 2 conv. + ReLU 1× 1 conv. dense + ReLU
N − 1 dense + ReLU dense + ReLU dense + ReLU
N dense layer dense layer dense layer

Table 1: Description of 3 neural architectures of value net-
works, called C-network, R1-network, and R2-network.
Each residual block (He et al. 2016) is composed of a ReLU
(Glorot, Bordes, and Bengio 2011) followed by a convolu-
tion (LeCun, Bengio, and Hinton 2015) followed by a ReLU
followed by a convolution followed by a ReLU. Output con-
tains one neuron. Other parameters are: kernel is 3×3, filter
number is F , neuron number in dense layers is D, padding
is same for Ri-network and valid for C-network.

5.1 Neural Networks and Parameters for Descent
We use two sets of learning parameters for the descent
framework in the experiments of this article. The set of pa-
rameters, that we call A-parameters, is: search time per ac-
tion τ = 1s, batch size B = 3000, memory size µ = 2 ·106,
sampling rate σ = 5% (for more details on these parameters,
see Section 3 of (Cohen-Solal 2020)). The set of parameters,
that we call B-parameters, is τ = 2s, B = 3000, µ = 250,
and σ = 2%. Moreover, B-parameters includes the use of
the data symmetry augmentation, the modified experience
replay, and the board sides encoding (see Section 7.2.1 of
(Cohen-Solal 2020)).

We use several networks trained by the descent frame-
work. There are 3 neural networks for the game of Hex,
denoted respectively h1, h2, and h3. The values of the 3
Hex neural networks are in [−121; 121] (by using the depth
heuristic, terminal states are evaluated based on the dura-
tion of games, which lasts, in the case of Hex 11, at most
121 turns). The associated learning parameters are the B-
parameters, with the following modifications for h1 and h2:
experience replay is not used, τ = 1s, and B = 2048.

Moreover, we respectively use a neural network from the
descent framework, training during 30 days, at the follow-
ing games: Breakthrough, Othello 8, and Othello 10. The
learning parameters are the A-parameters. At Othello 8 and
10 the scoring heuristic is used, at Breakthrough the depth
heuristic is used. The values of the Breakthrough (resp. Oth-
ello 8 ; resp. Othello 10) neural network is in [−481; 481]
(resp. [−64; 64] ; resp. [−100; 100]). All descent networks
are pre-initialized by the values of random terminal states
(around 107, i.e. a supervised learning is performed for ter-
minal states from random games. The neural network archi-
tectures used in this article are described in Table 2.

5.2 Polygames Neural Networks
In the experiments of Section 7.4, we use particular
Polygames neural networks which have participated in the
TCGA tournament of 2020 (in Taiwan): the Breakthrough
network won the tournament, the Othello size 8 network fin-
ished second, and the Othello size 10 network won the tour-

network architecture F D

h1, h2 C-network 150 81
h3 R1-network 240 1024

Breakthrough C-network 166 751
Othello 8 R2-network 59 213
Othello 10 R2-network 59 128

Table 2: Description of the used value neural network archi-
tectures in this paper (F and D are parameters of the archi-
tecture ; see Table 1).

nament. Their training required the use of 100 to 300 GPU
and 80 CPU during 5 to 7 days.

5.3 Computational Resources
For the performed trainings, we use the following hardware:
GPU Nvidia Tesla V100 SXM2 32 Go, 2 to 10 CPU (proces-
sors Intel Cascade Lake 6248 2.5GHz) on RedHat. For the
performed confrontations, we use the following hardware:
GeForce GTX 1080 Ti, 2 to 8 CPU (Intel(R) Xeon(R) CPU
E5-2603 v3 1.60GHz) on Ubuntu 18.04.5 LTS.

Descent programs (descent learning, UBFM, UBFMs,
ID, MCTS) are coded in Python (using tensorflow
1.12). Polygames is coded in C/C++. For confrontations,
Polygames num actor parameter is 8 (threads doing MCTS).

6 Comparison of Deep Reinforcement
Learning Algorithms

6.1 Game of Hex
In this section, we compare the learning performances of the
descent framework (see Section 4.2) with the learning per-
formances of Polygames (see Section 4.1). Several trainings
have been carried out on the game Hex (size 11). The de-
scent framework was used to train a first neural network,
by using the B-parameters, the depth heuristic, and the C-
network architecture (see Sections 4.2 and 5.1). A second
network was trained with the same parameters except that
the use of the depth heuristic was replaced by the classic
gain of a game (−1 / +1). These two learning processes
used between 1 and 2 CPU and one GPU (4 trainings were
launched in parallel on the same GPU, resulting in a per-
formance loss between 80% and 90%). A training was per-
formed with Polygames using a similar network architecture
(adapted to have a policy and to keep the same total num-
ber of neurons: there are 40 filters, 50 dense neurons, the
policy is densely connected to the last intermediate layer).
Another training was carried out with Polygames using an
alphazero-like network architecture with a similar number
of neurons (8 residual blocks with 64 filters and 256 neurons
in the dense layers). Each training with Polygames used one
GPU and 10 CPUs. The parameters of Polygames training
are the default parameters except that num game=121 and
act batchsize=121 (they are increased to improve the par-
allelism). Unlike the training of the two descent networks,
the training of the polygames networks does not use the data
augmentation symmetry nor the sides encoding. For this rea-
son, a third learning using the descent framework was per-



Figure 1: Evolution of winning percentages of descent with
classic gain, symmetry and sides encoding (green line), de-
scent with depth heuristic, symmetry and sides encoding
(red line), descent with classic gain (purple line), Polygames
(orange dotted line), and Polygames using a alphazero neu-
ral architecture (blue dotted line) against Mohex 2.0, during
a 30 days learning process (approximately one evaluation
every two days which consists of 300 matches in first player
and 300 other matches in second player).

formed without using these two techniques (by using the A-
parameters). The depth heuristic is also not used.

Each training lasted 30 days. In the context of these ex-
periments, the Polygames program has performed 3 times
more state evaluations than the descent program. Each neu-
ral network is then evaluated against Mohex 2.0 (Huang
et al. 2013), champion program at Hex from 2013 to 2017
at the Computer Olympiads. The search algorithm used to
evaluate the descent networks is UBFMs. The Polygames
program is used to make the trained Polygames networks
play. The evolution of the win percentages against Mohex
2.0 for each program during the learning process is shown
in Figure 1. In this experiment, learning with descent is very
significantly better than with Polygames. The performance
gain is even more marked at the start of learning.

6.2 Othello 8 and Breakthrough
A comparison analogous to the previous section was made
on Othello 8 and Breakthrough for a training duration of 6
days. The training using the descent framework on Othello
8 and Breakthrough is the one described in Section 5.1 (the
first 6 days of the 30 days of training). Note: neither symme-
try nor sides coding is used.

A GPU and two CPUs have been allocated for each train-
ing. The parameters of Polygames training are the default
parameters except that num game=64 and act batchsize=64
for Othello 8, that num game=48 and act batchsize=48
for Breakthrough, and that saving period=20, re-
play capacity=20000, and replay warmup=1000 (these
last parameters have been lowered because the learning time
and the number of CPUs are smaller than in the previous

section). The used networks with Polygames have a network
architecture similar to that of the corresponding descent
network (adapted to have a policy and to keep the same
number of neurons: the last residual layer is also connected
to a dense layer followed by a ReLU, another dense layer,
another ReLU, and finally the policy, and there are 32 (resp.
30) filters per convolution and 60 neurons per dense layer
for Othello 8 (resp. for Breakthrough).

At Breakthrough and Othello 8, the Polygames program
using the corresponding network at day 6 confronts UBFMs

with the corresponding descent network at days 1, 2, 3, 4, 5,
and 6. For the day i, i ∈ {1, . . . , 6}, there are 200 matchs in
first player and 200 matchs in second player. In each case,
the win percentage of UBFMs is 100%.

7 Comparison of Search Algorithms
In this section, we compare Unbounded Minimax (UBFM),
Safe Unbounded Minimax (UBFMs), Iterative Deepening
Alpha-beta (ID), and Monte Carlo Tree Search (MCTS) be-
tween them (in this section MCTS uses UCT and a value
function to evaluate the leaves nodes, except in the subsec-
tion 7.4 where it uses PUCT, a value function and also a
policy: the standard Polygames program is used).

7.1 Comparison on CPU without batching
We start by comparing them without using a GPU (in their
non-batched version). UBFMs, UBFM, Iterative Deepen-
ing Alpha-beta and MCTS (for c ∈ {0, . . . , 15) have been
evaluated (on CPU with one processor) against Mohex 2.0
(with four processors) using the neural networks h1, h2, and
h3 (see Section 5). The win percentages of these different
algorithms are described in Table 3 and Table 4 (only for
c ∈ {0, . . . , 5}). It is UBFMs which gets the best win per-
centages (followed by UBFM) with 1.5s and 10s. Note that
the win percentage of MCTS decreases as c increases, which
could suggest that in the context of UCT with reinforcement
learning (i.e. without policy), there is no point in exploring
after the learning process.

We also compare MCTS with UCT and First Play Ur-
gency for different values of c, but the results are worse than
without First Play Urgency. In this setting the best algorithm
is UBFMs. Using the h2 network, it even surpasses Mohex.

7.2 Comparison on GPU with batching
UBFMs, UBFM, Iterative Deepening Alpha-beta, and
MCTS (for c = 0 and for batch sizes b ∈ {1, 2, 3, 5, 8, 11})
have been evaluated on GPU in their batched version against
Mohex 2.0. The win percentages of these different algo-
rithms are described in Table 5. UBFMs (resp. UBFM) gets
the best win percentage with h3 and h1 (resp. h2). Note that
the win percentage of MCTS decreases as the batch size in-
creases. In fact, the win percentage continues to decrease for
b ∈ {14, 17, 20, 23, 26, 29, 32} (verified by using h2).

This experiment has been repeated (with only UBFMs,
MCTS for b ∈ {1, 2, 4, 6}, and h2) by limiting the search
time only by the execution time of the neural network so
as to ignore the impact of the python implementation of the
game. The results are similar. The win percentages of these
different algorithms are described in Table 6.



h1 h2 h3
UBFMs 39% 55% 37%
UBFM 32% 51% 32%
ID 31% 43% 28%

MCTSc=0 34% 46% 25%
MCTSc=1 33% 41% 28%
MCTSc=2 31% 39% 24%
MCTSc=3 24% 40% 25%
MCTSc=4 21% 43% 23%
MCTSc=5 15% 39% 23%
MCTSc=10 9% 26% 18%
MCTSc=20 1% 7% 8%
MCTSc=40 0% 1% 8%
MCTSc=80 1% 2% 9%

Table 3: Win percentages over 500 matches as first player
and 500 matches as second player against Mohex 2.0 for
different non-batched search algorithms (search time : 1.5s)
for the 3 Hex neural networks h1, h2, and h3 (see Sect. 5.1).

h1 h2 h3
UBFMs 40% 51% 34%
UBFM 36% 47% 28%
ID 28% 30% 16%

MCTSc=0 28% 37% 25%
MCTSc=1 23% 31% 29%
MCTSc=2 25% 32% 25%
MCTSc=3 23% 33% 26%
MCTSc=4 16% 36% 23%
MCTSc=5 15% 38% 23%

Table 4: Win percentages over 250 matches as first player
and 250 matches as second player against Mohex 2.0 for
different non-batched search algorithms (search time : 10s)
for the 3 Hex neural networks h1, h2, and h3 (see Sect. 5.1).

h1 h2 h3
UBFMs 59% 61% 48%
UBFM 35% 72% 44%
ID 33% 51% 27%

MCTSb=1 26% 49% 33%
MCTSb=2 31% 49% 33%
MCTSb=3 33% 46% 26%
MCTSb=5 28% 43% 18%
MCTSb=8 27% 42% 20%
MCTSb=11 26% 38% 16%

Table 5: Winning percentages over 300 matches as first
player and 300 matches as second player against Mohex 2.0
of different batched search algorithms (search time : 1.5s)
for the 3 Hex neural networks h1, h2, and h3 on GPU.

MCTS
UBFMs b = 1 b = 2 b = 4 b = 6

79% 54% 52% 49% 49%

Table 6: Winning percentages over 300 matches as first
player and 300 matches as second player against Mohex 2.0
of different batched search algorithms (neural network time
: 1.5s) using the neural network h2 on GPU.

rollouts 94 640 1600

UCTc=1.0 73% 69% 65%
UCTc=0.5 66% 61% 58%
UCTc=0.1 54% 56% 52%

Table 7: Winning percentages of Polygames using UCT with
c = 0 againsts Polygames using UCT with c ∈ {0.1, 0.5, 1}
over 169 matches as first player and 169 matches as second
player for Hex size 11 and different rollouts (mean over the
13 best publicly available polygames neural networks at
http://dl.fbaipublicfiles.com/polygames/checkpoints/list.txt).

7.3 Exploration constant on Polygames with UCT
In this section, we investigate about the observation of the
previous experiment that the exploration term of UCT has
turned out to be harmful with a neural network having
learned by reinforcement, i.e. that the best value for c is 0.
We compare different values of c for UCT in the framework
of Polygames in order to see if our observation does not de-
pend on the used reinforcement learning method. The win
percentages of Polygames using UCT (see Section 3.6) de-
pending on c for Hex are described in Table 7. Again, the
best exploration value is c = 0.

7.4 Comparison versus Tournaments Polygames
Networks with PUCT

In this section, we compare, for Breakthrough, Othello 8 and
10, several search algorithms using the descent networks of
Section 5.1 by making them confront the Polygames pro-
gram using the networks of Section 5.2, those having won
or finished second in the TCGA 2020 tournament.

We start by comparing UBFMs, UBFM, ID, and MCTS
with different exploration constants with a think time of 1.5
seconds per action. The results are described in Table 8. The
best results are for UBFMs and it is better than Polygames
(very significantly at Othello 8 and 10). Note that the best
exploration constant c of MCTS is 0.5, very close to the
performance of c = 0 and c = 0.5. Relative to the values
of states, it is a very small exploration constant. The exper-
iment was then redone, limiting itself to UBFMs and with
15 seconds of thinking time per action. The results are de-
scribed in Table 9. Polygames is this time better at Break-
through but still worse at Othello 8 and 10. The experiment
was then redone, with 5 seconds of thinking time per action.
The results are similar but better for UBFMs (they are de-
scribed in Table 9).

This experiment was done again with a thinking time of
1.5 seconds but using the descent networks of day 5 of the

http://dl.fbaipublicfiles.com/polygames/checkpoints/list.txt


Breakthrough Othello 8 Othello 10
rate win win draw win draw

UBFMs 66% 97% 2% 98% 1%
UBFM 65% 90% 4% 71% 3%
ID 28% 92% 0% 7% 1%

MCTSc=0 28% 71% 1% 30% 1%
MCTSc= 1

2
31% 71% 7% 33% 1%

MCTSc=1 33% 53% 3% 37% 1%
MCTSc= 5

2
31% 75% 2% 30% 3%

MCTSc=5 27% 67% 3% 18% 1%
MCTSc=10 22% 54% 3% 16% 1%
MCTSc=20 9% 28% 2% 9% 2%
MCTSc=40 1% 19% 3% 6% 1%

Table 8: Results of 300 matches as first player and 300 other
matches as second player of the descent networks of Section
5.1 (with 30 days of learning) using different search algo-
rithms (minimax algorithms are batched) with 1.5 seconds
of search time per action at Breakthrough and Othello (size
8 and 10) against tournaments Polygames networks of Sec-
tion 5.2 (having on average 3.25 seconds of search time).

time Breakthrough Othello 8 Othello 10

win 15s 35% 71% 71%
draw 15s 17% 3%

win 5s 46% 94% 79%
draw 5s 4% 2%

Table 9: Results of 300 matches as first player and 300 other
matches as second player of the descent networks of Section
5.1 (30 days of learning) with batched UBFMs at Break-
through and Othello (size 8 and 10) against tournaments
Polygames networks of Section 5.2 .

learning process (i.e. the networks were only trained for 5
days) instead of day 30. The results are described in Table
10. Polygames is beaten at Breakthrough and Othello 8. This
last experiment was done again with a thinking time of 5
seconds. The results are described in Table 10. This time,
Polygames is better at Breakthrough but UBFMs is equiv-
alent at Othello 10 and even better at Othello 8. In sum-
mary, at least after 5 days of learning, UBFMs has a level
of the same order as Polygames networks at Breakthrough
and Othello 10, but it is better at Othello 8. After 30 days
of learning, it has slightly improved at Breakthrough and
it is significantly superior at Othello 8 and 10. Recall that
Polygames networks were trained for 5 to 7 days but using
100 to 300 GPU, against only a “quarter” of one GPU for
UBFMs networks.

8 Conclusion
We have conducted several experiments on search and rein-
forcement learning algorithms in games. We made the first
comparison between Unbounded Minimax and MCTS. We
also made the first comparison between the new descent
learning framework and a state of the art framework for re-

time Breakthrough Othello 8 Othello 10

win 1.5s 66% 65% 22%
draw 1.5s 1% 4%

win 5s 32% 81% 46%
draw 5s 7% 3%

Table 10: Results of 300 matches as first player and 300
other matches as second player of the descent networks of
Section 5.1 (5 days of learning) with batched UBFMs at
Breakthrough and Othello (size 8 and 10) against tourna-
ments Polygames networks of Section 5.2 .

inforcement learning.
In the context of our comparison of reinforcement learn-

ing algorithms, the descent framework, a Minimax approach
different in many points from the reinforcement learn-
ing state of the art, had much better performances than
Polygames, a state of the art framework for zero learning.
Moreover, learning using the descent framework has gen-
erated strong networks at Breakthrough, Othello 8 and 10
(in addition to Hex). The level reached at Breakthrough
is analogous to the Polygames TCGA champion network.
At Othello 8 and 10, the level is significantly exceeding
the Polygames networks, which have been respectively sec-
ond and champion at the TCGA tournament. This result
should be emphasized given the much lower resources used
to achieve this result (1 GPU against 100 to 300).

In the context of our comparisons on search algorithms
using an evaluation function trained by reinforcement learn-
ing, we observed the following points. On the one hand,
the Unbounded Minimax, and in particular its version with
a safe decision, is the best search algorithm. On the other
hand, exploration with UCT is no longer useful: perfor-
mance decreases by increasing exploration.

Finally, we have seen that using a GPU to parallelize state
evaluations improves performance but does not change the
other conclusions of this article on search algorithms. Note
that parallelization of MCTS has reduced performances.
This should be explained by the fact that even if paralleliza-
tion makes it possible to evaluate many more states, the ma-
jority of these states would not have been evaluated without
parallelization. This would lead to a waste of time, decreas-
ing the time for evaluating the states impacting the final de-
cision of the move to be played and therefore a drop in per-
formance. Minimax does not suffer from this phenomenon
because the evaluated states are the same with or without
parallelization.

All these experiments show that different versions of Un-
bounded Minimax are competitive with MCTS provided the
evaluation is performed with neural networks trained with
deep reinforcement learning. They also show that deep re-
inforcement learning with descent, the in-depth variant of
Unbounded Minimax, is more efficient than with MCTS.
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