Game Description Languages:
the Good, the Bad, and the Ugly

Yngvi Bjornsson
Department of Computer Science

Reykjavik University

HASKOLINN | REYKJAVIK
REYKJAVIK UNIVERSITY

=



Overview

* Purpose of GDLs
* Properties of GDLs

* Birds-eye-view of
 GDL
* RBG
 Ludii (language)
* Comparing
* Pros and cons
* Good, bad, ugly

co-starring

CLINT EASTWOOD




Purpose of GDLs

* Describe games

» Preferably, in a concise and
intuitive way using (mostly)
human-understandable terms.

* But for what purpose?

* Non-ambiguous recording of
game rules
* Al research
* Game-playing agents
* Evolution of games
* Writing commercial games

* Who is writing up the games?




Desirable Properties

Descriptive

* Expressive R

* What type of games can be ® ®

described?

e Computationally universal? R R X
* Descriptive ¢ o o o

* Concise and intuitive

O O Q O O

* Human readable

* Declarative? e e ® e O O
e Efficient N Y N NN

* For computers to play Expressive Efficient



Abstract Strategy (Board) Games

* What types of games to describe?
e Table-top vs. board vs. ...
* Number of players
* Deterministic vs. non-deterministic
* Perfect vs. hidden information
* Finite vs. Infinite
* Turn-based vs. real-time

* What aspects of a game to describe?
* Connect-4
* Drop from top or place in top-most empty?
* Chess
e Terminal conditions?
* 3 (5)-fold repetition, 50 (75)-move rule?
* How castling is performed? (king first, same hand)

L X «d
00000
® 0000




Game Description Language(GDL)cenesereth et al., 2005)

(role white)

* The official language of the GGP (init (cellHolds 1 1 white))

competitions (2005-2016)

° Logic_BaSed (init (control white))
* Datalog -> KIF -> GDL <= (legal white (move ?x ?y1 ?x ?y2))
_ (true (control white))
* Expressiveness (true (cellHolds ?x ?y1 white))
* Deterministic, perfect information (succ ?y1 ?y2)
(allows simultaneous moves), finite. (cellEmpty ?x ?y2))
o GDL I/
_ . (<= (next (cellHolds ?x2 ?y2 ?player))
* Write custom reasoning backends (role ?player)
* From-scratch resolution based (does ?player (move ?x1 ?yl ?x2 ?y2)))

* Prolog-based ( (goal white 100) whiteWin)
. ‘ <= goal wnite wnitewin
PropNet-based (index 1) (index 2) (index 3) (index 4) ...

(succ 12) (succ23) (succ34) (succ45) ...



GDL (cont)

 Good

* Declarative, well-known formalism

* Runs on many platforms

e Bad

* No game-elements to build on

No arithmetic

"Requires” writing a new game from scratch
(Not expressive enough)

Inefficient reasoning
* Albeit (later) alleviated by PropNet for smaller games

* Ugly
* Not up to the task intended for, and contributed to the demise of
the GGP competitions




Regular Board Games (RBG) (kowaiski et al., 2019)

* Regular Language

* |dea of using a regular language from
Simple Board Games (2012)

* All game aspects (more or less)
described using regular expressions

* Impressive!

* Describes

* Deterministic, perfect-information,
finite board game

* Non-stacking of pieces

* Implementation
° C++
* Provides an interpreter and a compiler

19

#players = white(100), black(100)
#pieces = e, w, b
#variables = i
#board = rectangle (up,down, left,right,
[b, b, b, b, b, b, b, b]
[b, b, b, b, b, b, b, b]
[e, e, e, e, e, e, e, e]
[e, e, e, e, e, e, e, e
[e, e, ¢, ¢, e, e, e, e]
[e, e, e, ¢, e, e, e, ¢e]
(w, w, w, w, w, w, w, w|
(w, W, W, W, w, w, w, wW|)
#anySquare = ((up* + down*)(left* + right*))
#turn (me; myPawn; opp; oppPawn; forward) =
anySquare {myPawn}
[e] forward ({e} + (left+right) {e,oppPawn})
—>> [ myPawn | keeper
[$ me=100] [$ opp=0]
( {! forward} -=>> {}

+ {? forward} ->opp)
#rules = —>white (
turn (white; w; black; b; up)
turn(black; b; white; w; down)
)}



RBG

° (5()()(j #castlingKingMove(forward; backward; color; oppColor) =
{$ color~KingMoved==0}

{! isAttackedBy(oppColor; forward; backward)}

(

* Declarative, well-defined
formalism
e Although requires an understanding
of regular expressions.
right {empty} [color~King]

. ..
Efficient right pickUpPiece(color~RookUnmoved)

e Bad left 2
o . . I 9 . .
e Who writes game descrlptlons? + left {empty} {! isAttackedBy(oppColor; forward; backward)}

* (Not expressive enough) left {empty} [color~King]
P g left {empty} // Rook can pass through an attacked square

¢ LJ{;'\/ left pickUpPiece(color~RookUnmoved)
right”3

right {empty} {! isAttackedBy(oppColor; forward; backward)}

* Syntax

) )
* alien for non-cs

[color~RookMoved]



LUd || La NEUAEEe (Browne, Piette et al., 2020)

(game "Breakthrough"
(players { (player N) (player S)})

.e (equipment {
1 - 1 (board (<Tiling: e Board:size>))
* Ludii is a general game-playing system (Poard (o ikiogiimer >
- . (or {
* Part of the Digital Ludeme PrOJegt . bt AT R
* Uses a formal language for describing the games -
(the Ludii language) (directions (FR FL))
* Ludemes are a fundamental concept. ke T
(is Enemy (who at: (to)))
)
e Describes also, most notably: p My [RRROUR. REOEN
* hidden information and non-deterministic games i
. ,
* Less restriction on the board ceesE B (eLEaR NHE)S
* (compared to RBG, e.g. site stacking) o ATSERSHE B ianbam DoERe)
(rules
. (start {
o Implemented In Java . a(place "Pawnl" (expand (sites Bottom)))
(place "Pawn2" (expand (sites Top)))

* A Python wrapper exists )

(play (forEach Piece))

Used in ICGA Game Olympiad Competitions (end (if "ReachedTarget® (result Mover Win)))



d T (game "Amazons"
Lu ” (players 2)
(equipment {

e Good (board (square 10))
(piece "Queen" Each (move Slide (then (moveAgain))))

* Expressive, descriptive, and efficient
P P (piece "Dot" Neutral)

* Ludemes as building-blocks !
* Bad (rules
* Framework vs. language? (start {
° Heavy dependency On Java (place IIQueenlll {IIA4II ||D1|| llGlll IIJ4II})
* (mobile i0S?) (place "Queen2" {"A7" "D10" "G10" "J7"})
* |s Java part of Ludii’s GDL? N
e Building-blocks (play
* without using Java (define macros) (if (is Even (count Moves))
o Ug|y (forEach Piece)
. h M ||D 1
e API (unnecessarily?) bloated ) (move Shoot (piece "Dot0"))
* Tempting to add and add more.
* Efficiency vs. descriptiveness decisions (end (if (no Moves Next) (result Mover Win) ) )

e Multi-step-moves )

)



Comparison (objective)

Comparison (YB)

* Expressive 9

* Ludii-L can describe hidden-  Chart Area
information, non-deterministic,

(real-time) games.
* Descriptive
|
* Ludii-L most human-readable !
* But understanding relies on having ’
good (and correct!) documentation
* Efficient . I

Expressive Descri ptive Efficient
* RGB
EGDL EMRBG M Ludi-L

L]

15,




Conclusions

* Is there room for yet another GDL?
* Expressive

* Enough to describe most relevant games Visua I Ed Itor (G U I)
* Descriptive
* Mostly declarative, using a well-established formalism

 Efficient
* black-box optimizations

* Also:
* Module-based (minimize footprint)

* Minimum dependency on platform/programming language
e Extensible Common

« Well-defined standardized execution model? Execution Model
* |s there a need for yet another GDL?

(VM)



