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Abstract. This paper presents a general approach for measuring dis-
tances between board games within the Ludii general game system. These
distances are calculated using a previously published set of general board
game concepts, each of which represents a common game idea or shared
property. Our results compare and contrast two different measures of dis-
tance, highlighting the subjective nature of such metrics and discussing
the different ways that they can be interpreted.
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1 Introduction

Ludii is a relatively recent general game system that contains a large variety
of different board games [1]. This includes games with stochasticity and hidden
information, alternating and simultaneous move formats, between one and six-
teen players, piece stacking, team-based scoring, among many other features.
Games in Ludii are described using ludemes, which are specific keywords that
are defined within the Ludii Game Description Language (L-GDL). While indi-
vidually simple, these ludemes can be combined to express complex game rules
and mechanics. A previous study demonstrated that it is possible to use a game’s
ludemes to accurately predict the performance of various game-playing heuris-
tics [2]. However, representing a game solely as the set of ludemes within its
description can lead to issues.

Because these ludemes are often combined to express more complex rules
and mechanics, their specific order and arrangement can dramatically alter a
game’s behaviour. Just looking at the ludemes that are present within a game’s
description is often not enough to understand their wider context and intended
effect. For example, knowing that a game contains the move ludeme "hop" does
not tell us whether this type of move can be done over friendly or enemy pieces.
We are also not able to detect how frequently "hop" moves occur in typical play,
compared to other types of moves. To address these and other similar limitations,
a set of general board game concepts was proposed [3]. These concepts were
created as a way to identify and extract higher-level features within each game,
thus providing a more complete representation.
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In this paper, we explore how these concepts can be used to calculate a mea-
sure of distance between any two games in Ludii. In addition to providing insight
into the types of games currently available within Ludii, being able to measure
the distance between two games has a variety of practical applications. One ex-
ample is the ability to improve the performance of general game playing agents
on unknown games, by identifying similar known games with pre-existing knowl-
edge and results. This application has already motivated prior investigations into
measuring game distance within other general game systems, including both the
Stanford GGP framework [4,5] and the General Video Game AI framework [6–8].
Along with this, measures of game distance can be used by recommender systems
to suggest new games to users based on their prior preferences and ratings [9,10],
for transfer learning between similar games [11], to examine the variety of games
within a specific subset [12], or for game reconstruction purposes [13].

The remainder of this paper is structured as follows. Section 2 describes
the games and concepts that will be used. Section 3 provides visualisations of
the overall distribution of concept values across all games within Ludii. Section
4 presents several different approaches for calculating distances between two
games using their concept values, and provides two specific examples based on
Cosine Similarity and Euclidean distance. Section 5 summarises and discusses
the results of these two distance measures when applied to all pairs of games.
Section 6 summarises our findings and suggests possibilities for future work.

2 Datasets

This section describes the two datasets that were used for this study, that of
the games within Ludii and their associated concept values. These datasets were
obtained from v1.3.2 of the Ludii database, which is publicly available online.1

2.1 Games

As of the time of writing, Ludii version 1.3.2 includes 1059 fully playable games.
While some of these games also contain multiple options and rulesets for pro-
viding different variations of the same base rules, for the sake of simplicity we
will only be considering the default version for each game as provided by Ludii.

Due to the fact that Ludii was developed as part of the Digital Ludeme
Project [13], the majority of the board games it contains are traditional games
that date back many hundreds of years. Even though a large assortment of mod-
ern abstract games have also been implemented within Ludii, this set of games is
unlikely to be fully representative of the complete population of different games
that exist within the modern board game industry. For example, Ludii does not
currently include any card games, even though many modern board games often
use cards in some capacity. Nevertheless, Ludii still contains a substantial vari-
ety of different abstract games, and an analysis of its full game library is worth
performing.
1 www.ludii.games/downloads/database-1.3.2.zip
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2.2 Concepts

Each concept represents a specific property of a game as a single numerical value.
These concepts can be binary (e.g. if the game contains hidden information),
discrete (e.g. the number of players), or continuous (e.g. the likelihood of a game
ending in a draw). The Ludii database currently lists 499 distinct concepts with
computed values for every game. Each of these concepts is associated with one
of six categories based on what aspect of the game they represent, see Table 1.

Table 1. Concept Categories

Category Examples Count

Properties Num Players, Stochastic, Asymmetric 21
Equipment Mancala Board, Hex Tiling, Dice, Hand 74
Rules Hop Capture, Turn Ko, Draw Frequency 302
Math Multiplication, Intersection, Union 33
Visual Go Style, Chess Component, Stack Type 42
Implementation Playouts Per Second, Moves Per Second 27

Concepts also differ in the way they are computed. Compilation concepts can
be calculated from just the game’s description, and will be the same every time
they are computed. Playout concepts instead require one or more game traces
in order to compute them, and will often vary for the same game if different
traces are used (although using a large number of traces can reduce this vari-
ance). For this study, 87 of the concepts used were playout concepts. These were
computed for each game using 100 game traces generated from random play,
with a maximum limit of 2500 moves per game trace (after which the result is a
draw).

Due to the different value ranges that each concept can take, we decided
to normalise each concept to the same scale. However, one issue with these
concepts is that they are susceptible to having outlier values. For example, games
played on implied "boards" of potentially unbounded size (e.g. Dominoes) are
modelled in Ludii using extremely large static boards. Another example would
be the game Hermit which, due to the unique way in which each player’s score is
represented, produces an average score variance of over 100 million points. Due to
cases like these, directly applying Min-Max scaling to our concept values would
overemphasise these outliers and make all other values irrelevant. To mitigate
this problem, we first applied a bi-symmetric log transformation on all concept
values [14], see Equation (1).

f(x) =

{
log2(x+ 1) x ≥ 0
−log2(1− x) x < 0

(1)

This transformation reduces the impact of the more extreme positive and
negative values, while ensuring that binary concepts are unaffected. These new
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transformed values are then normalised using Min-Max scaling, to give the final
concept values for each game. Thus our full dataset consists of 1059×499 matrix,
detailing the concept values for each game.

3 Data Visualisation

Before calculating any game distances, we decided to first visualise the overall
distribution of concept values across all games within Ludii. To do this, we
applied t-distributed stochastic neighbor embedding (t-SNE) [15] to reduce our
concept dataset to two dimensions, see Figure 1. From this visualisation, we
identified four distinct clusters of games. The orange cluster contains 207 games,
the green cluster contains 147 games, the red cluster contains 105 games, and
the blue cluster contains 600 games.

Fig. 1. Game concept dataset reduced to two dimensions using t-SNE. Points are
coloured based on identified game clusters.

Analysing these clusters closer reveals some general trends within each group.

– The orange cluster contains all games with a Mancala Board, such as Oware
or Kalah. These games are highly separated with a very distinct way of
playing, leading to a lot of concepts that are unique to them such as the
mechanic of sowing stones. It therefore makes sense that these games would
form their own distinct cluster.

– The green cluster contains all games with both dice and a track for pieces to
move along (e.g. Backgammon or Snakes and Ladders), as well as a few other
games such as EinStein Würfelt Nicht and So Long Sucker. Despite the clear
separation of the games in this cluster from the rest, this distinction is not the
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sole result of any one game element. Instead, it seems that such games would
be better characterised as those with a high degree of uncertainty, either
because stochastic elements have a large impact on the game or because of
other player’s decisions.

– The red cluster contains all games with a "Threat" mechanism, predomi-
nantly used in Chess-like games when seeing if the king is in Check, as well
as some other similar games such as Ploy and Chaturaji. Like the green clus-
ter, this group of games is not characterised by a single concept. The key
aspects that group these games together, seem to be the combination of a
large number of pieces for each side, as well as complex movement rules for
each individual piece.

– The blue cluster contains all other games which do not fall into the previous
clusters.

From this, we can first see that the blue cluster is considerably larger than
the others, making up more than half the total number of games. While this
cluster could probably be split up further into sub-clusters, the separation is not
as clear as for the clusters identified. Admittedly, the separation between the
blue and red clusters is also not as distinct as the others, but is clear enough
that we felt it worth mentioning. With the exception of the orange cluster, which
is uniquely defined by the existence of the "Mancala Board" concept, there is
no single concept that is responsible for any one cluster. Each cluster is instead
defined by a combination of multiple concept values, making previous attempts
to categorise games based on singular properties incapable of creating such a
distinction. Based on these findings, it is clear that the recorded concept values
provide significant information about a game’s mechanics and properties, and
are likely to be an effective basis for measuring the distance between two games.

4 Game Distance

When it comes to calculating the distances between games, each game is rep-
resented as a vector of 499 normalised concept values. Comparing two games
can therefore be done using a variety of different vector distance/similarity mea-
sures. This includes Euclidean distance, Manhattan distance, Cosine similarity,
Jaccard index, Jenson-Shannon divergence, among many other options.

Additional pre-processing can also be applied to adjust the importance of
each concept. For example, Inverse Document Frequency (IDF) could be applied
to all binary concepts, increasing the weights for concepts that occur in fewer
games while decreasing the weights for those that occur in many. Each concept
category could also be adjusted as a whole. For example, each concept could
be scaled relative to the size of its category, resulting in each category carrying
equal collective weighting. Some categories could even be excluded completely,
as the importance of each category will likely vary based on the intended appli-
cation. For example the "Visual" category of concepts has no bearing on actual
gameplay, and would provide no benefit for the application of training a general
game-playing agent.
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Unfortunately, due the lack of any concrete benchmarks for measuring game
distance, the effectiveness of these different measures and weight adjustments
cannot be objectively evaluated without a specific application in mind. Due to
the open-ended nature of this exploratory study, we decided to only compare
the Cosine similarity and Euclidean distance measures, two of the most popular
vector distance measures, without any additional pre-processing or weight ad-
justments. We encourage other researchers who wish to use this dataset for their
own work, to experiment with these different distance measure approaches and
identify what works best for their desired application.

The normalised Cosine distance between two games G1 and G2, with concept
vectors denoted by ~c1 and ~c2 respectively, is given by Equation (2).

CosineDistance(G1, G2) =
1

2

(
1−

~c1 · ~c2
‖~c1‖‖~c2‖

)
(2)

The normalised Euclidean distance between two games, using the same terms
in the previous equation and n denoting the total number of concepts, is given
by Equation (3).

EuclideanDistance(G1, G2) =
‖~c1 − ~c2‖√

n
(3)

Both of these distance measures are normalised within the zero to one range,
with one representing maximal difference and zero representing maximal simi-
larity.

5 Results

Both Euclidean and Cosine distances were calculated between each possible pair
of our 1059 games, giving a total of 560,211 unique game pairs for each distance
measure.

Fig. 2 presents a box plot visualisation of each distance measure across all
game pairs. From this, we can see that the Euclidean distance is typically larger
than the Cosine distance. The inter-quartile range for Cosine distance is situ-
ated almost exactly equally between its minimum and maximum values, while
the inter-quartile range for Euclidean distance is skewed much closer to the max-
imum value. The difference between the median values of each distance measure
(0.1358) is also much larger than the difference between their maximum values
(0.0572).

Fig. 3 provides further details on this observation, showing the general trend
for each distance measure across all game pairs when ordered from smallest to
largest along the x-axis. Looking at the 10% - 90% interpercentile range, repre-
sented by the area between the two green dashed lines, shows that the gradient
of each distance measure is approximately equal. The most significant difference
between the trends of these two distance measures is instead located at the ex-
tremities. While both distance measures begin at zero, the Euclidean distance
initially increases far more rapidly than the Cosine distance. The opposite is true
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Fig. 2. Box plot for Cosine and Euclidean distances across all game pairs.

Fig. 3. Cosine and Euclidean distance trends, ordered by size along the x-axis.

at the upper percentile end, with the Cosine distance taking a sharp increase to
raise itself closer to the Euclidean distance.

Fig. 4 visualises the differences between the Cosine and Euclidean distances
for each individual game pair. From this we can see that there is a strong positive
relationship between both distance measures, with a Pearson correlation coeffi-
cient of 0.7574. The overall upward curve of the points also reiterates our prior
observation, that the rate at which the Euclidean distance increases is initially
much higher, but then gradually falls to be more in line with that of the Cosine
distance.

5.1 Discussion

While these statistical results provide a broad overview of how these distance
measures compare across all games, we also explore how they differ with re-
gard to specific game pairs. The game pair with the greatest difference in their
Cosine and Euclidean distances (with a higher Cosine distance) was between
Magic Square and Rock-Paper-Scissors, with a Cosine distance of 0.4438 and a
Euclidean distance of 0.3036. Both of these games are relatively simple and share
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Fig. 4. The Cosine and Euclidean distance for all 560,211 game pairs.

very little in common, with Magic Square being a logic puzzle and Rock-Paper-
Scissors being a two-player game with simultaneous moves. From the alternative
perspective, the game pair with the greatest difference in their Euclidean and
Cosine distances (with a higher Euclidean distance) was between Tenjiku Shogi
and Chex, with a Cosine distance of 0.1429 and a Euclidean distance of 0.3792.
Both of these games are very complex, featuring large boards along with many
different pieces and rules.

Based on these two contrasting game pair examples, it initially seems that
Cosine distance is greatest between simpler games with relatively few high-value
concepts, while Euclidean distance is greatest between more complex games with
a larger number of high-value concepts.

To dive deeper into how each distance measure compares across multiple
game pairs, we looked at which game pairs received the largest values from each
measure. One immediate observation was that the majority of the largest Cosine
and Euclidean distances were between a logic puzzle, such as Sudoku, Kakuro
or Hoshi, and non-puzzle game. This significant logic puzzle presence makes
intuitive sense, as they are a unique type of game that would likely produce very
distinct concept values.

For the Cosine distance measure, all of the 20 largest game pair distances in-
volved either Rock-Paper-Scissors, Morra or Aksadyuta. All three of these games
are very simple in terms of their rules, and are essentially purely random in terms
of their outcome. These games contain no boards or pieces (at least in the tra-
ditional sense), and typically last for only a few moves. It would therefore make
sense for these games to be highly distant from most other games, and further
backs up our theory that the Cosine distance measure gives the greatest distance
values to game pairs that include a simpler game with less common concepts.

For the Euclidean distance measure, all of the 20 largest game pair distances
involved either Beirut Chess, Ultimate Chess or Chex. These games are all Chess
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variants with some unique twist on their rules. All three of these games would
probably be considered more complex than the majority of other games in our
dataset. This likely results in a substantial number of large value concepts for
each game, again supporting the idea that the greatest Euclidean distances are
typically given to game pairs that involve at least one high complexity game.

Based on these further comparisons, it appears that neither distance measure
is inherently better than the other. It instead seems likely that each approach, as
well as the other suggested measures that we did not explore deeper, has its own
strengths, weaknesses and biases. The choice of which distance measure is most
suitable is a highly subjective decision, and would depend on the intended appli-
cation. We therefore reiterate our previous statement that multiple approaches
should be tested and evaluated for each specific use-case, rather than attempting
to develop a single correct measure of game distance.

6 Conclusion

In this paper, we have investigated the use of general board game concepts
to measure the distance between pairs of games. Based on the same original
concept dataset, two different measurements were proposed based on Cosine
and Euclidean distance. Our results highlight the differences between these ap-
proaches. Cosine distance tended to give its highest values to pairs of relatively
simple games with very few shared concepts. Euclidean distance on the other
hand, appeared to include larger and more complex games in its highest value
pairs, where any similarities between the games were outweighed by their differ-
ences. While we are unable to conclude which distance measure might be better
or worse for any specific application, the contrasting outputs between these two
distance measures illustrates the importance of experimenting with multiple dis-
tance measurement approaches.

Possible future work could involve a more complete analysis and summary of
a larger range of distance measurements, as well as the effect that different pre-
processing and weight adjustment techniques has on their outputs. Additional
concepts could also be added to fill knowledge gaps within the existing dataset.
One addition could be the inclusion of playout concepts based on alternative
game traces, such as those produced from different game-playing agents or hu-
man players. Rather than adding more concepts, a more nuanced and critical
look at the existing corpus may instead lead to the removal or weight reduction
of certain items. It may not make sense to treat meaningful concepts, such as
whether a game involves hidden or stochastic information, with as much impor-
tance as overly niche concepts, such as whether the game includes pieces that
move backwards to the left. However, such alterations to the concept dataset are
likely to be application specific, as adding or removing concepts for one purpose
may inadvertently affect another.
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