
Ludii - The Ludemic General Game System
Éric Piette and Dennis J. N. J. Soemers and Matthew Stephenson

and Chiara F. Sironi and Mark H. M. Winands and Cameron Browne1

Abstract. While current General Game Playing (GGP) systems
facilitate useful research in Artificial Intelligence (AI) for game-
playing, they are often somewhat specialised and computationally
inefficient. In this paper, we describe the “ludemic” general game
system Ludii, which has the potential to provide an efficient tool for
AI researchers as well as game designers, historians, educators and
practitioners in related fields. Ludii defines games as structures of
ludemes – high-level, easily understandable game concepts – which
allows for concise and human-understandable game descriptions. We
formally describe Ludii and outline its main benefits: generality, ex-
tensibility, understandability and efficiency. Experimentally, Ludii
outperforms one of the most efficient Game Description Language
(GDL) reasoners, based on a propositional network, in all games
available in the Tiltyard GGP repository. Moreover, Ludii is also
competitive in terms of performance with the more recently proposed
Regular Boardgames (RBG) system, and has various advantages in
qualitative aspects such as generality.

1 INTRODUCTION
The goal of General Game Playing (GGP) is to develop artificial
agents capable of playing a wide variety of games [20]. Several dif-
ferent software systems for modelling games, commonly called Gen-
eral Game Systems, currently exist for different types of games. This
includes deterministic perfect-information games [11], combinato-
rial games [4], puzzle games [26], strategy games [17], card games
[10] and video games [22, 19].

Since 2005, the Game Description Language (GDL) [16] has be-
come the standard for academic research in GGP. GDL is a set of
first-order logical clauses describing games in terms of simple in-
structions. While it is designed for deterministic games with perfect
information, an extension named “GDL-II” [24] has been developed
for games with hidden information, and another extension named
“GDL-III” [28] has been developed for epistemic games.

1.1 GDL background
The generality of GDL provides a high level of algorithmic chal-
lenge and has led to important research contributions [2] – especially
in Monte Carlo tree search (MCTS) enhancements [8, 9], with some
original algorithms combining constraint programming, MCTS, and
symmetry detection [12]. Unfortunately, the key structural aspects
of games – such as the board or card deck, and arithmetic opera-
tors – must be defined explicitly from scratch for each game defini-

1 Department of Data Science and Knowledge Engineering,
Maastricht University, the Netherlands, email: {eric.piette,
dennis.soemers, matthew.stephenson, c.sironi, m.winands,
cameron.browne}@maastrichtuniversity.nl

tion. GDL is also limited in terms of potential applications outside
of game AI.

Game descriptions can be time consuming to write and debug, and
difficult to decipher for those unfamiliar with first order logic. The
equipment and rules are typically interconnected to such an extent
that changing any aspect of the game would require significant code
rewriting. For example, changing the board size from 3×3 to 4×4
in the Tic-Tac-Toe description would require many lines of code to
be added or modified. GDL game descriptions are verbose and diffi-
cult for humans to understand, and do not encapsulate the key game-
related concepts that human designers typically use when thinking
about games. Processing such descriptions is also computationally
expensive as it requires logic resolution, making the language dif-
ficult to integrate with other external applications. Some complex
games can be difficult and time consuming to model (e.g., Go), or
are rendered unplayable due to computational costs (e.g., Chess). The
main GGP/GDL repository [25] is only extended with a few games
every year.

1.2 Regular Boardgames (RBG)

In [13], an alternative to GDL called Regular Boardgames (RBG)
is proposed. It comes from an initial work proposed by [1] for using
a regular language to encode the movement of pieces for a small
subset of chess-like games called Simple Board Games. However,
as the allowed expressions are simplistic and applied only to one
piece at a time, it cannot express any non-standard behaviour. RBG
extended and updated this idea to be able to describe the full range
of deterministic board games.

The RBG system uses a low-level language – which is easy to
process – as an input for programs (agents and game manager), and
a high-level language – which allows for more concise and human
readable descriptions. The high-level version can be converted to
the low level version in order to provide the two main aspects of a
GGP system: human-readability and efficiency for AI programs. The
technical syntax specification of RBG can be found in [14]. Thanks
to this distinction between two languages, it is possible to model
complex games (e.g., Amazons, Arimaa or Go), and apply the more
common AI methods (minimax, Monte-Carlo search, reinforcement
learning, etc.) to them. Indeed, in the previous languages used for
GGP (including the academic state of the art GDL), it was difficult
to model any complex games, and quite hard to play or reason on any
of them in a reasonable amount of time. RBG has been demonstrated
to be universal for the class of finite deterministic games with perfect
information, and more efficient than GDL [13].

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

1.3 The Digital Ludeme Project
The Digital Ludeme Project (DLP)2 is a five-year research project,
launched in 2018 at Maastricht University, which aims to model
the world’s traditional strategy games in a single, playable digital
database. This database will be used to find relationships between
games and their components, in order to develop a model for the
evolution of games throughout recorded human history and to chart
their spread across cultures worldwide. This project established a
new field of research called Digital Archæoludology [7].

The DLP aims to model the 1,000 most influential traditional
games throughout history, each of which may have multiple interpre-
tations and require hundreds of variant rule sets to be tested. This is
therefore not just a mathematical / computational challenge, but also
a logistical one requiring a new kind of General Game System. The
DLP deals with traditional games of strategy including most board
games, card games, dice games, tile games, etc., and may involve
non-deterministic elements of chance or hidden information, as long
as strategic play is rewarded over random play; we exclude dexterity
games, physical games, video games, etc.

In this paper, we formally introduce Ludii, the first complete Lu-
demic General Game System able to model and play (by a human or
AI) the full range of traditonal strategy games. We introduce the no-
tion of ludemes in Section 2, and the ludemic approach that we have
implemented in Section 3. Section 4 describes the Ludii System it-
self, its abilities to provide the necessary applications to the Digital
Ludeme Project are highlighted in Section 5, and the underlying ef-
ficiency of the Ludii system in terms of reasoning is demonstrated
experimentally in Section 6 by a comparison with one of the best
GDL reasoners – propnets [27] – and the interpreter and compiler of
the Regular Boardgames (RBG) system. Finally, Section 7 concludes
the paper and describes several future research possibilities.

2 LUDEMES
The decomposition of games into their component ludemes [18], i.e.
conceptual units of game-related information, allows us to distin-
guish between a game’s form (its rules and equipment) and its func-
tion (its emergent behaviour through play). This separation provides
a clear genotype/phenotype analogy that makes phylogenetic analy-
sis possible, with ludemes making up the “DNA” that defines each
game.

This ludemic model of games was successfully demonstrated in
earlier work to evolve new board games from existing ones [5]. An
important benefit of the ludemic approach is that it encapsulates key
game concepts, and gives them meaningful labels. This allows for
the automatic description of game rule sets, comparisons between
games, and potentially the automated explanation of learnt strate-
gies in human-comprehensible terms. Recent work shows how this
model can be enhanced for greater generality and extensibility, to al-
low any ludeme that can be computationally modelled to be defined
using a so-called class grammar approach, which derives the game
description language directly from the class hierarchy of the under-
lying source code library [6].

This approach provides the potential for a single AI software tool
that is able to model, play, and analyse almost any traditional game
of strategy as a structure of ludemes. It also provides a mechanism
for identifying underlying mathematical correspondences between
games, to establish probabilistic relationships between them, in lieu
of an actual genetic heritage.

2 Digital Ludeme Project: www.ludeme.eu

3 LUDEMIC APPROACH
We now outline the ludemic approach used to model games.

3.1 Syntax
Definition 1. A Ludii game state s encodes which player is to move
in s (denoted by mover(s)), and six vectors each containing data
for every possible location; what, who, count, state, hidden, and
playable. A more precise description of the locations and the specific
data in these vectors is given after Definition 3.

Definition 2. A Ludii successor function is given by

T : (S \ Ster,A) 7→ S,

where S is the set of all the Ludii game states, Ster the set of all the
terminal states, and A the set of all possible lists of actions.

Given a current state s ∈ S \ Ster , and a list of actions A =
[ai] ∈ A, T computes a successor state s′ ∈ S. Intuitively, a com-
plete list of actions A can be understood as a single “move” selected
by a player, which may have multiple effects on a game state (each
implemented by a different primitive action).

Definition 3. A Ludii game is given by a 3-tuple of ludemes G =
〈Players, Equipment,Rules〉 where:

• Players = 〈{p0, p1, . . . , pk},F〉 contains a finite set of k +
1 players, where k ≥ 1, and a definition of the game’s control
flow F ∈ {Alternating, Simultaneous,Realtime}. Random
game elements (such as rolling dice, flipping a coin, dealing cards,
etc.) are provided by p0, which denotes nature. The first player to
move in any game is p1, and the current player is referred to as the
mover. When F is omitted, we assume an alternating-move game
by default.

• Equipment = 〈Ct, Cp〉 where:

– Ct denotes a list of containers (boards, player’s hands, etc.).
Every container ct = 〈V,E〉, where ct ∈ Ct, is a graph with
vertices V and edges E. Every vertex vi ∈ V corresponds to a
playable site (e.g. a square in Chess, or an intersection in Go),
while each edge ei ∈ E represents that two sites are adjacent.

– Cp denotes a list of components (pieces, cards, tiles, dice, etc.),
some of which may be placed on sites of the containers in Ct.
We use the convention that the component cp0 ∈ Cp is placed
on all “empty” sites.

• Rules defines the operations of the game, including:

– Start = [a0, a1, . . . , ak] denotes a list of starting actions. The
starting actions are sequentially applied to an “empty” state
(state with c0 on all sites of all containers) to model the ini-
tial state s0.

– Play : S 7→ P(A), where P(A) denotes the powerset of the
setA of all possible lists of legal actions. This is a function that,
given a state s ∈ S, returns a set of lists of actions.

– End = (Cond0(s),~S0) ∪ . . . ∪ (Conde(s),~Se) denotes a
set of conditions Condi(s) under which a given state s is con-
sidered to be terminal. Each termination condition Condi(s)
leads to a score vector ~Si.

Ludii provides some predefined vectors: Win, Loss, Draw, Tie,
and Abort. Moreover, if the mover has no legal moves then they

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

are in a (temporary) Stalemate and must perform the special action
pass, unless the End rules dictate otherwise. States in which all
players were forced to pass for the last complete round of play are
abandoned as a Draw.

We specify locations loc = 〈c, vi, li〉 by their container c =
〈V,E〉, a vertex vi ∈ V , and a level li ≥ 0. Every location spec-
ifies a specific site in a specific container at a specific level, where
most games only use li = 0 but stacking games may use more lev-
els. For every such location, a game state s encodes multiple pieces
of data, as described in Definition 1. The index of a component lo-
cated at loc in s is given by what(s, loc), the owner (player index)
by who(s, loc), the number of components by count(s, loc), and
the internal state of a component (direction, side, promotion status,
etc.) by state(s, loc). If the state of a location loc is hidden infor-
mation for a certain player pi, that is given by hidden(s, loc, pi).
Games in which play is not limited to a board or other graph with
a predetermined size, such as Andantino, are implemented by pre-
allocating a large, invisible graph, and only allowing play to start in
the centre of the graph. New locations gradually become playable
over time as required by the rules. Whether or not any particular lo-
cation loc is currently playable in a state s in such games is given by
playable(s, loc).

3.2 Ludii example
Following Definition 3, multiple Ludemes can be combined together
to form complete game descriptions. As an example, we provide be-
low the complete description of the game Tic-Tac-Toe according to
the EBNF-style grammar generated by Ludii.

(game ” Tic−Tac−Toe ”
(players 2)
(equipment {

(boa rd (s q u a r e 3) (s q u a r e))
(p i e c e ” Disc ” P1) (p i e c e ” Cross ” P2)

})
(rules

(play (t o Mover (empty)))
(end (l i n e 3) (r e s u l t Mover Win))

)
)

The players ludeme describes the mode of play; a game with
alternating turns played between two players. The first subset of
the equipment ludeme describes the main board as a square 3×3
tiling, with the second subset listing the components as a disc piece
for player 1 and a cross piece for player 2. Each turn, the mover
plays a piece of their colour at any empty cell, which is implemented
by (to Mover (empty)). The winning condition for the mover
is to create a line of three pieces. Tic-Tac-Toe does not require any
Start rules.

If the board fills before either player wins, then game defaults to a
Draw after both players are forced to pass. Note that judicious use of
default settings for common game behaviours allows succinct game
descriptions.

4 LUDII SYSTEM
The next section introduces the Ludii system itself (https://
ludii.games/)3 describing both the grammar approach and the
core of the system.

3 The specific version used to generate results reported in this paper
may be downloaded from: https://ludii.games/downloads/
Ludii_ECAI2020PaperVersion.jar

4.1 Class grammar
Ludii is a complete general game system implemented in Java that
uses a class grammar approach, in which the game description lan-
guage is automatically generated from the constructors in the class
hierarchy of the Ludii source code [6]. Game descriptions expressed
in the grammar are automatically instantiated back into the corre-
sponding library code for compilation, giving a guaranteed 1:1 map-
ping between the source code and the grammar in using the reflec-
tion of Java to instantiate the different constructors to get a Java exe-
cutable.

Schaul et al. [23] points out that “any programming language con-
stitutes a game description language, as would a universal Turing
machine”. Ludii effectively makes its programming language (Java)
the game description language. It can theoretically support any rule,
equipment or behaviour that can be programmed in Java. The imple-
mentation details are hidden from the user, who only sees the simpli-
fied gramma, which summarises the code to be called.

4.2 The core of Ludii
The core of Ludii is a ludeme library, consisting of a number of
classes, each implementing a specific ludeme. A Ludii game G defin-
ing all relevant ludemes (players, equipment, rules) is stored as a sin-
gle immutable Game object. In the context of General Game Playing,
displaying any game automatically is important for understanding
strategies by AI players and testing the correctness of game imple-
mentations through human play. To this end, all equipment in Ludii
implements the Drawable interface, which means that each item
of equipment is able to draw a default bitmap image for itself at a
given resolution, for displaying the board state. Containers Ct are
able to draw their current components at the appropriate positions,
orientations, states, etc. A View object provides the mechanism for
showing the current game state on the screen and a Controller
object provides the mechanism for updating the game state based on
user input such as mouse clicks. All games available in the system
can be played by both humans and/or AI.

As an example, Figure 1 shows a 2-player game G with Ct =
{ct0}, where ct0 is a hexagonal container with hexagonal tiles. Cp =
{cp0, c

p
1, c

p
2}, where cp0 is the empty component, cp1 is the white disc

for the player p1, and cp2 the black disc for player p2. The system
has a graph representation of the board for visualisation; the vertices,
edges, and faces of this graph are depicted in blue. The dual of this
graph, which is the graph given by ct0, is depicted in grey.

The game graph itself can be modified during certain graph games
(e.g. Dots & Boxes) in which a player’s moves involve operations on
the graph (e.g. adding or cutting edges or vertices). Reasoning effi-
ciency can be optimised by pre-generating data such as board cor-
ners, exterior vertices, vertices along the top side of the board, etc.
within the Graph class, and vertex neighbours indexed by direction,
vertices reached by turtle steps, etc. within the Vertex class.

The data vectors what, who, etc. of a state s are implemented in a
collection of ContainerState objects. Different representations
are implemented in order to minimise the memory footprint and to
optimise the time needed to access necessary data for reasoning on
any game:

• Uniform pieces per player (e.g. Tic-Tac-Toe).
• Distinguished pieces per player (e.g. Chess).
• Piece state per site (e.g. Reversi).
• Piece count per site (e.g. Mancala games).
• Piece stacking (e.g. Lasca).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 1. A hex board container with hexagonal tiling and the dual of its
graph (which is itself a graph).

• No fixed board (e.g. Dominoes).
• Hidden information (e.g. Stratego, card games).

Ludii automatically selects the appropriate state type from the
rules before creating the Game object, to ensure the most suitable
representation is used.

Container states are defined using a custom BitSet class, called
ChunkSet, that compresses the required state information into a
minimal memory footprint, based on each game’s definition. For
example, if a game involves no more equipment than a board and
uniform pieces in N colours, then the game state is described by a
ChunkSet subdivided into chunks of B bits per board cell, where
B is the lowest power of 2 that provides enough bits to represent
every possible state per cell (including state 0 for the empty cells).4

Using the game state and the different ludemes describing the
game rules, the system can compute the legal moves for any state.
The tree of ludemes is evaluated to return the list of Action ob-
jects applicable for the mover. Each Action object describes one
or more atomic actions to be applied to the game state to execute
a move. Actions typically include adding or removing components
to/from containers, or changing component counts or states within
containers.

Definition 4. A trial τ is a sequence of states si and action lists Ai:

〈s0, A1, s1, . . . , sf−1, Af , sf 〉

such that f ≥ 0, and for all i ∈ {1, . . . f},

• the played action list Ai is legal for the mover(si−1)
• states are updated: si = T (si−1, Ai)
• only sf may be terminal: {s0, . . . , sf−1} ∩ Ster = ∅

τ is stored in a Trial object, providing a complete record of a
game played from start to end, including the moves made.

Any reasoning on any game can be parallelised using separate tri-
als per thread. All the data members of the Game object are constant
and can therefore be shared between threads. A thread will be able to
use a Trial object to compute any playouts from any state. On the
system each AI object describes the AI implementation chosen for
each player, including computational budget/time limits, hints such
as features for biasing playouts [3], etc.

5 BENEFITS AND KEY PROPERTIES
Ludii is being designed and implemented primarily to provide an-
swers to the questions raised by the DLP, but will stand alone as a
4 Chunk sizes are set to the lowest power of 2 to avoid issues with chunks

straddling consecutive long values.

(chessBoard (square 8)) (chessBoard (hexagonal 5))

Figure 2. The game of Breakthrough on square (left) and hexagonal (right)
board tilings.

platform for general games research in areas including AI, design,
history and education. Ludii provides many advantages over existing
GGP systems, as follows:

Simplicity: Simplicity refers to the ease with which game descrip-
tions can be created and modified, and can be estimated by the num-
ber of tokens required to define games. This data is shown for dif-
ferent games in GDL, RBG and Ludii in Table 1. Describing a game
with the ludemic approach is typically much simpler compared to a
logic-based approach (e.g. Ludii requires only 24 tokens for Tic-Tac-
Toe and 548 for Chess, whereas GDL requires 381 and 4, 392 tokens
respectively). Ludemic game descriptions can also be easily modified
to test different sizes, geometries or rules. For example, changing the
size or shape of a board (e.g. Figure 2) can be accomplished by mod-
ifying a single parameter, while the same change in GDL requires
many lines of code to be added or modified.

Note that, in the case of Ludii, these results often include addi-
tional tokens to provide customisation options, essentially encoding
multiple variants of games within a single file. For example, Ludii in-
cludes options for many different board sizes (ranging from 3×3 to
19×19), as well as an option for an inversed “misère” win condition,
all in the same Hex game description file with 129 tokens. GDL and
RBG both require completely new files for such modifications, and
their game descriptions tend to grow quickly for larger board sizes.

Table 1. A comparison of the number of tokens to describe games used
between GDL, RBG and Ludii.

Game GDL RBG Ludii

Amazons (10×10) 1,158 204 51
Breakthrough (8×8) 670 134 72
Chess (8×8) 4,392 641 548
Chinese Checkers 1530 418 243
Connect 4 (6×7) 751 155 29
Dots & Boxes (6×6) 689 × 131
English Draughts 1,282 263 161
Gomoku (15×15) 514 324 32
Hex (9×9) 702 198 129
Hex (11×11) × 245 129
Reversi (8×8) 894 311 78
Tic-Tac-Toe (3×3) 381 101 24
Tron (10×10) 405 × 50
Wolf & Sheep (8×8) 794 × 55

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Clarity: Clarity refers to the degree to which game descriptions
would be self-explanatory to non-specialist readers. The logic-based
game descriptions of GDL are often difficult for humans to interpret.
Appropriately-named macros in RBG can improve readability, but
the game descriptions still require knowledge of regular languages to
fully understand. In Ludii, the Java classes that define each ludeme
are named using meaningful English labels, providing convenient
definitions for the concepts involved. This is especially useful for
games that encapsulate more complex mathematical concepts (ge-
ometry, algebra, arithmetic, etc.) within their component ludemes.

Generality: Generality refers to the scope of games covered by
the system without the need for extensions.. As Ludii uses the
class grammar approach to describe the ludemes, it can theoreti-
cally support any game that can be programmed in Java, The ver-
sion of Ludii described in this paper already includes many dif-
ferent game types beyond those that can be implemented in GDL
and RBG. This includes stochastic games, games with hidden infor-
mation, simultaneous-move games, and one proof-of-concept real-
time game. The current version of RBG is restricted to deterministic,
perfect-information, alternating-move games. GDL (without exten-
sions) is restricted to deterministic, perfect-information games.

Extensibility: Extensibility refers to the ease with which new
functionality can be added to the system. The current version of Ludii
provides approximately 100 games, and already contains most of the
systems that are expected to be necessary to support most classes
of games (like stochastic games, hidden information games, etc.).
Extending Ludii simply involves adding new classes to the ludeme
library, which are then automatically subsumed into the grammar,
making extensibility very open-ended. Extending GDL involves sig-
nificant modifications to the core model and program. Similarly,
RBG is expected to require significant modifications to its language
and underlying systems to support new classes of games, such as
stochastic or hidden information games.

Efficiency: Since the Ludii programmer has complete control of
the underlying code – within the constraints of the API and program-
ming guidelines – it is possible to optimise ludemes at any desired
level. There is of course a trade-off between game optimisation and
description detail. The more optimised a game is, the shorter its de-
scription tends to be and the less detail we know about it. This has
profound implications for the DLP, in which the ability to reliably
compare games for similarity is a key requirement. In Ludii, we
sometimes prioritise aspects such as clarity or generality over effi-
ciency. Section 6.2 describes different experiments ran in order to
compare Ludii to GDL and RBG in terms of efficiency.

Evolvability: This refers to the likelihood that randomly evolving
game descriptions will produce viable children that resemble their
parents. GDL game descriptions tend to involve complex chains of
logical operations that must be crafted with great care. Randomly
applying crossovers and mutations between GDL descriptions is ex-
tremely unlikely to produce playable results, let alone improve on
the parents. Conversely, the ludemic approach is ideally suited to
evolutionary approaches such as genetic programming [15] and has
already proven successful in evolving new high quality games [4].

Cultural Applications: Aside from its GGP benefits, Ludii also
has several applications as a tool for the new domain of Digital

Archæoludology [7]. The Ludii system is linked to a server and
database that stores relevant cultural and historical information about
the games. This information will not only provide additional real-
world context, but will allow us to reconstruct viable and historically
authentic rule-sets for games with incomplete information, develop a
“family tree” of traditional games, and help map the spread of games
throughout history.

Universality: While Ludii supports a wide range of games, in-
cluding nondeterministic and hidden information games, we cannot
prove the universality of its full grammar within the scope of this pa-
per. We instead show that Ludii is universal for finite deterministic
perfect information games:

Theorem 1. Ludii is universal for the class of finite deterministic
games with perfect information.

Similar to [13], we formalise a finite, deterministic, k-player game
with perfect information as a tuple (k, T, ι, υ), where:

• k ∈ N indicates the number of players.
• T is a finite tree with:

– Nodes S (also referred to as game states).

– An initial state s0 ∈ S (the root node of T).

– Terminal states Ster ⊆ S (leaf nodes of T).

– A predecessor function f : (S \ {s0}) 7→ S, such that f(s)
denotes the parent of s in T .

• ι : (S \ Ster) 7→ {0, . . . , k} indicating which player has the
control in a given state.

• υ : Ster 7→ Rk, such that υ(s) denotes the vector of payoffs for k
players for any terminal state s ∈ Ster .

This is equivalent to the formalisation of k-player extensive
form games by [21], excluding elements required only for non-
determinism or imperfect information.

We prove that, given any arbitrary finite, deterministic game with
perfect information as defined above, a Ludii game can be con-
structed such that there is a one-to-one mapping between states and
state transitions between the original game and the Ludii game. The
intuition of our proof is to construct a Ludii game where the game
board is represented by a graph with an identical structure to the full
game tree T . The Ludii game is played by moving a single token,
placed on the “root node” in the initial game state, along the graph
until a leaf node is reached. For any state z in the original game,
there is a corresponding state s in the Ludii game such that the to-
ken is located on the vertex corresponding to the position of z in T .
Note that explicitly enumerating the complete game tree as a graph
is unlikely to be the most optimal representation for most games, but
it demonstrates that Ludii is capable of representing all such games.

Definition 5. Let D = (k, T, ι, υ) denote a finite, deterministic,
k-player game with perfect information as formalised above. We de-
fine a related Ludii game G(D) = 〈Players, Equipment,Rules〉,
where Rules = 〈Start, P lay,End〉, such that:

• Players = 〈{p0, p1, . . . , pk}, Alternating〉, where all pi for
i ≥ 1 correspond to the k different players. The nature player p0
will remain unused in deterministic games.

• Equipment = 〈{ct0}, {cp0, c
p
1}〉. The only container ct0 = 〈V,E〉

is a graph with a structure identical to the tree T of the original
game D. Due to the structure of ct0 being identical to the structure

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

of T , we can uniquely identify a vertex v(z) for any state z ∈ T
from the original game. For any such vertex – except for v(s0) –
we can also uniquely identify an adjacent “parent” vertex p(v(z)),
such that p(v(z)) = v(f(z)); the parent of a vertex corresponds
to the predecessor of the corresponding state in T .

• The Start rules are given by a list containing only a single action.
This action creates the initial game state by placing the cp1 token
on the site v(s0) of ct0 that corresponds to the root node of T .

• Let s denote any non-terminal Ludii game state, such that there is
exactly one site v(z) for which what(s, 〈ct0, v(z), 0〉) = cp1 . Let
z denote the state in the original game that corresponds to the site
v(z). Let g(z) denote the children of z in T . Given s, we define
Play(s) to return a set {Ai} of lists of actionsAi, with one list of
actions for every child node z′ ∈ g(z). Each of those lists contains
two primitive actions; one that takes the token cp1 away from v(z)
(replacing it with the “empty” token cp0), and a second action that
places a new token cp1 on the site v(z′) of ct0 that corresponds to
the child z′ ∈ T .

• The end rules are given by End = {(Condi(·),~Si)}. For any
terminal game state zi ∈ Ster , let v(zi) denote the site in the
graph ct0 that corresponds to the position of zi in T . We add a tu-
ple (Condi(·),~Si) to End such that Condi(s) returns true if and
only if what(s, loc) = cp1 for loc = 〈ct0, v, 0〉, and ~Si = υ(zi).
Intuitively, we use a separate end condition for every possible ter-
minal state zi ∈ Ster in the original gameD, which checks specif-
ically for that state by making sure the cp1 token is placed on the
matching vertex v(zi).

• Let s denote any non-terminal Ludii game state, such that there is
exactly one site v(z) for which what(s, 〈ct0, v(z), 0〉) = cp1 . Let
z denote the state in the original game that corresponds to the site
v(z). Then, we define mover(s) = ι(z).

Lemma 1. Let G(D) denote a Ludii game constructed as in Def-
inition 5. Every game state s that can be reached through legal
gameplay in such a game has exactly one vertex v ∈ ct0 such that
what(s, 〈ct0, v, 0〉) = cp1 , and what(s, 〈ct0, u, 0〉) = cp0 for all other
vertices u 6= v.

Intuitively, this lemma states that every game state reachable
through legal gameplay has the cp1 token located on exactly one ver-
tex, and that all other vertices are always empty (indicated by cp0).

Proof. Let s0 denote the initial game state. The Start rules are de-
fined to place a single cp1 token on v(z0), where z0 denotes the initial
state in the D game, which means that the lemma holds for s0.

Let s denote any non-terminal game state for which the lemma
holds. Then, the assumptions in Definition 5 for an adequate defini-
tion of Play(s) are satisfied, which means that {Ai} = Play(s)
is a non-empty set of lists of actions, one of which must be selected
by mover(s). Every Ai is defined to take away the token cp1 from
the vertex it is currently at, and to place it on exactly one new ver-
tex. This means that the lemma also holds for any successor state
T (s,Ai), which proves the lemma by induction.

We are now ready to prove Theorem 1:

Proof. Let D denote any arbitrary game as formalised above, with
a tree T . Let G(D) denote a Ludii game constructed as described in
Definition 5. We demonstrate that for any arbitrary traversal through
T , from s0 to some terminal state zter ∈ Ster , there exists an equiva-
lent trial τ , as defined in Definition 4, in G(D). By “equivalent” trial,

we mean that the sequence of states traversed is equally long, the or-
der in which players are in control is equal, and the payoff vectors at
the end are equal.

Let z0, z1, . . . , zf denote any arbitrary line of play in the origi-
nal game D, such that z0 is the initial game state, and zf ∈ Ster .
By construction, the initial game state s0 of G(D) has the token
cp1 placed on the vertex v(z0) corresponding to the root node of T .
This means that we have a one-to-one mapping from z0 to s0, where
what(s0, 〈ct0, v(z0), 0〉) = cp1 .

Let zi denote some non-terminal state in the sequence
z0, z1, . . . , zf−1, such that we already have uniquely mapped zi
to a Ludii state si where what(si, 〈ct0, v(zi), 0〉) = cp1 . Lemma 1
guarantees that the assumptions required for Definition 5 to ade-
quately define Play(si) are satisfied. Furthermore, we know that
ι(zi) = mover(si), which means that the same player is in
control. The definition of Play(si) ensures that there is exactly
one legal list of actions Ai such that T (si, Ai) = si+1, where
what(si+1, 〈ct0, v(zi+1), 0〉) = cp1 (note that zi+1 must be a suc-
cessor of zi in T). We pick this si+1 to uniquely map to zi+1.

By induction, this completes the unique mapping between se-
quences of states z0, z1, . . . , zf and s0, s1, . . . , sf , uniquely spec-
ifies the lists of actions Ai that must be selected along the way, and
ensures that zi is always mapped to a state si such that the cp1 token
is placed on v(zi). This last observation ensures that one of the End
conditions in G(D) triggers for sf , and that the correct payoff vector
~S = υ(zf) is selected.

6 EXPERIMENTS
The Ludii System uses MCTS as its core method for AI move plan-
ning, which has proven to be a superior approach for general games
in the absence of domain specific knowledge [9]. MCTS playouts
require fast reasoning engines to achieve the desired number of simu-
lations. Hence, we use flat Monte Carlo playouts (i.e., trials τ where
sf ∈ Ster) as the metric for comparing the efficiency of Ludii to
other GGP systems.

6.1 Experimental design
In the following comparison, we compare GDL, RBG and Ludii
based on the number of random playouts from the initial game state
obtained per second.

For GDL, we used the fastest available game implementation from
[25] and tested one of the most efficient reasoners based on propo-
sitional networks or “propnets” [27], implemented in GGP-BASE5.
Propnets speed up the reasoning process with respect to custom made
or Prolog-based reasoners by translating the GDL rules into a di-
rected graph that resembles a logic circuit, whose nodes correspond
to either logic gates or GDL propositions that represent the state,
players’ moves and other aspects of the game. Information about
the current state can be computed by setting the truth value of the
propositions that correspond to the state and propagating these val-
ues through the graph. Setting and propagating the truth values of
the propositions that correspond to the players’ actions allows us to
compute the next state. RBG provides an interpreter and a compiler
to perform reasoning, both of which we compare to Ludii.

Every experiment was conducted on a single core of an Intel(R)
Core(TM) i7-8650U CPU at @ 1.90 GHz, 2.11 GHz, running for at
least ten minutes, allowing at most 4GB RAM to be used.

5 https://github.com/ggp-org/ggp-base

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Table 2. An experimental comparison of the number of playouts per second between GDL, RBG, and Ludii.

RBG RBG Rate Rate RBG Rate RBG
Game GDL Interpreter Compiler Ludii GDL Interpreter Compiler

Amazons 185 1,911 7,883 3,916 21.17 2.05 0.50
Breakthrough 1,123 5,345 17,338 3,795 3.38 0.71 0.22
Chess 0.06 81 704 14 233.33 0.17 0.02
Chinese Checkers 297 236 1,145 780 2.62 3.31 0.68
Connect-4 13,664 41,684 174,034 78,925 5.78 1.89 0.45
Dots & Boxes 1672 × × 5,671 3.39 × ×
English Draughts 872 3,130 14,781 8,052 9.23 2.57 0.54
Gomoku 927 1,338 2,405 36,445 39.31 27.24 15.15
Hex (9×9) 195 5,669 13,360 21,987 112.75 3.88 1.65
Hex (11×11) × 2,757 6,282 12,303 × 4.46 1.96
Reversi 203 1,349 7,434 1,438 7.08 1.07 0.19
Tic-Tac-Toe 85,319 199,823 473,372 545,567 6.39 2.73 1.15
Tron 121,988 × × 238,129 1.95 × ×
Wolf & Sheep 5,533 × × 23,106 4.18 × ×

6.2 Results
The results of our experiments for a selection of games available in
GDL and/or RBG, are shown in Table 2, showing the number of
random playouts obtained per second. All included games have, to
the best of our knowledge, complete and correct game rules in Ludii.

Table 3 highlights our results for a selection of games, including
several historical games, that have no GDL or RBG equivalent. The
fact that no existing GGP system supported the full range of games
required for the DLP was a driving motivation in developing Ludii.

Table 3. The average number of playouts per second for games unavailable
in GDL or RBG.

Game Ludii Game Ludii

Alquerque (5×5) 12,283 Oware 9,622
Connect-6 (19×19) 14,126 Royal Game of Ur 1,537
Dara 2,141 Senet (3×10) 664
Fanorona 2,952 Stratego 108
Hnefatafl (11×11) 197 Surakarta (6×6) 672
Konane 4,653 Tant Fant 43,129
Mu Torere 3,438 Yavalath 175,525

6.3 Discussion
Ludii outperforms GDL in terms of efficiency for all games tested.
Ludii is at least two times faster for all but one game. For sim-
pler games, board size is highly correlated with speed improvement;
Ludii is more than six times faster for the standard 3×3 Tic-Tac-Toe,
but almost forty times faster for the Gomoku 15×15. For more com-
plex games – such as Amazons and Hex – Ludii is once again more
efficient than GDL (over twenty times faster in these cases).

The greatest speed disparity is for Chess, with a rate greater than
200. The GDL description of Chess cannot be translated to a prop-
net because its size exceeds the memory, therefore we had to use
the GDL Prover from the GGP-BASE for comparison. The GGP-
BASE Prover is generally slower for complex games with respect to
the propnet, explaining the low number of playouts for Chess (0.06).

In most games, Ludii outperforms the interpreter of RBG, but is
outperformed by the compiler of RBG (with playout counts typi-
cally still being within the same order of magnitude). In games like

Hex and Gomoku, Ludii still outperforms also the compiler of RBG.
We note that the RBG compiler requires a significant amount of ini-
tialisation time for some games, with initialisation times of over 10
seconds being reported for some individual games [14]. In contrast,
Ludii’s unit test which compiles all included games (over 100) takes
less than 10 seconds in total. Some of the largest differences in per-
formance in comparison to RBG, such as the difference in Chess,
are due to deliberate trade-offs in favor of aspects like clarity and
evolvability.

7 CONCLUSION
The proposed ludemic General Game System Ludii outperforms
GDL – the current standard for academic AI research into GGP
– in terms of reasoning efficiency, and is competitive with RBG. It
also has advantages in terms of simplicity, clarity, generality, exten-
sibility and evolvability, and represents a significant step forward for
general game playing research and development.

The potential benefits of this new GGP approach present several
opportunities for future AI work. For example, features discovered
by reinforcement learning could be automatically visualised for any
game to possibly reveal useful strategies relevant to that game, or pro-
vided as human-understandable descriptions based on ludemes with
meaningful plain English labels. Another work in progress includes
improving AI playing strength by biasing MCTS with features au-
tomatically learnt through self-play.

Ludii is the first general game system that can model the complete
scope of games needed for the DLP. Most of the major game types
have already been implemented within the Ludii system, providing
valuable resources for developing and evaluating new game AI tech-
niques. Ludii also has applications beyond this, allowing researchers
in fields such as history, game design, mathematics and education
to analyse the inherent similarities and strategic properties within a
wide range of traditional strategy games.

ACKNOWLEDGEMENTS
This research is part of the European Research Council-funded Dig-
ital Ludeme Project (ERC Consolidator Grant #771292). This work
is partially supported by The Netherlands Organisation for Scientific
Research (NWO) in the framework of the GoGeneral Project (Grant
No. 621.001.121).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

REFERENCES
[1] Yngvi Björnsson, ‘Learning rules of simplified boardgames by observ-

ing’, in Proceedings of the Twentieth European Conference on Artificial
Intelligence, pp. 175–180, (2012).

[2] Yngvi Björnsson and Stephan Schiffel, ‘General game playing’, in
Handbook of Digital Games and Entertainment Technologies, pp. 1–
23, Singapore, (2016). Springer Singapore.

[3] Cameron Browne, Dennis J. N. J. Soemers, and Eric Piette, ‘Strategic
features for general games’, in Proceedings of the 2nd Workshop on
Knowledge Extraction from Games co-located with 33rd AAAI Confer-
ence on Artificial Intelligence June 27, 2019, Honolulu, Hawaii, USA.,
pp. 70–75, (2019).

[4] Cameron B. Browne, Automatic generation and evaluation of recom-
bination games, Ph.D. dissertation, Queensland University of Technol-
ogy, 2009.

[5] Cameron B. Browne, Evolutionary Game Design, Springer, 2011.
[6] Cameron B. Browne, ‘A class grammar for general games’, in Advances

in Computer Games, volume 10068 of LNCS, pp. 167–182, Leiden,
(2016).

[7] Cameron B. Browne, ‘Back to the past: Ancient games as a new AI
frontier’, in AAAI 2017, San Francisco, (2017).

[8] Hilmar Finnsson and Yngvi Björnsson, ‘Simulation-based approach to
general game playing’, in The Twenty-Third AAAI Conference on Arti-
ficial Intelligence, pp. 259–264. AAAI Press, (2008).

[9] Hilmar Finnsson and Yngvi Björnsson, ‘Learning simulation control in
general game-playing agents’, in The Twenty-Fourth AAAI Conference
on Artificial Intelligence, pp. 954–959. AAAI Press, (2010).

[10] Jose M. Font, Tobias Mahlmann, Daniel Manrique, and Julian Togelius,
‘A card game description language’, in Applications of Evolutionary
Computation - 16th European Conference, EvoApplications 2013, Pro-
ceedings, volume 7835 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), pp. 254–263, (2013).

[11] Michael R. Genesereth, Nathaniel Love, and Barney Pell, ‘General
game playing: Overview of the AAAI competition’, AI Magazine,
26(2), 62–72, (2005).

[12] Frédéric Koriche, Sylvain Lagrue, Éric Piette, and Sébastien Tabary,
‘Constraint-based symmetry detection in general game playing’, in Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI-17, pp. 280–287, (2017).

[13] Jakub Kowalski, Mika Maksymilian, Jakub Sutowicz, and Marek
Szykuła, ‘Regular boardgames’, in The Thirty-Third AAAI Conference
on Artificial Intelligence. AAAI Press, (2019).

[14] Jakub Kowalski, M. Mika, Jakub Sutowicz, and Marek Szykuła. Regu-
lar boardgames, 2018. http://arxiv.org/abs/1706.02462.

[15] John Koza, Genetic Programming, MIT Press, Massachusetts, 1992.
[16] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and

Michael Genesereth. General game playing: Game description lan-
guage specification, 2008.

[17] Tobias Mahlmann, Julian Togelius, and Georgios N. Yannakakis, ‘Mod-
elling and evaluation of complex scenarios with the strategy game de-
scription language’, in 2011 IEEE Conference on Computational Intel-
ligence and Games (CIG), pp. 174–181, (2011).

[18] David Parlett, ‘What’s a ludeme?’, in Game Puzzle Design, volume vol.
2, pp. 83–86, (2016).

[19] Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D. Gaina, Ju-
lian Togelius, and Simon M. Lucas, ‘General video game ai: A mul-
titrack framework for evaluating agents, games, and content genera-
tion algorithms’, IEEE Transactions on Games, 11(3), 195–214, (Sep.
2019).

[20] Jacques Pitrat, ‘Realization of a general game-playing program.’, in
IFIP Congress (2), pp. 1570–1574, (1968).

[21] Eric Rasmusen, Games and Information: An Introduction to Game The-
ory, 4th ed., B. Blackwell, 2007.

[22] Tom Schaul, ‘An extensible description language for video games’,
IEEE Transactions on Computational Intelligence and AI in Games,
6(4), 325–331, (Dec 2014).

[23] Tom Schaul, Julian Togelius, and Jürgen Schmidhuber, ‘Measuring in-
telligence through games’, CoRR, abs/1109.1314, (2011).

[24] Stephan Schiffel and Michael Thielscher, ‘Representing and reasoning
about the rules of general games with imperfect information’, Journal
of Artificial Intelligence Research, 49, 171–206, (2014).

[25] Sam Schreiber. Games-base repository. http://games.ggp.
org/base/, 2016.

[26] Mohammad Shaker, Mhd Hasan Sarhan, Ola Al Naameh, Noor Shaker,
and Julian Togelius, ‘Automatic generation and analysis of physics-
based puzzle games’, 2013 IEEE Conference on Computational In-
teligence in Games (CIG), 241–248, (2013).

[27] Chiara F. Sironi and Mark H. M. Winands, ‘Optimizing propositional
networks’, in Computer Games, pp. 133–151. Springer, (2017).

[28] Michael Thielscher, ‘GDL-III: A description language for epistemic
general game playing’, in Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-17, pp. 1276–
1282, (2017).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

