
Ludii and XCSP:
Playing and Solving Logic Puzzles

Cédric Piette

Centre de Recherche en Informatique de Lens
Université d’Artois

Lens, France
piette@cril.fr

Éric Piette, Matthew Stephenson, Dennis J.N.J. Soemers,
Cameron Browne

Department of Data Science and Knowledge Engineering
Maastricht University

Maastricht, the Netherlands
{eric.piette,matthew.stephenson,dennis.soemers,

cameron.browne}@maastrichtuniversity.nl

Abstract—Many of the famous single-player games, commonly
called puzzles, can be shown to be NP-Complete. Indeed, this
class of complexity contains hundreds of puzzles, since people
particularly appreciate completing an intractable puzzle, such as
Sudoku, but also enjoy the ability to check their solution easily
once it’s done. For this reason, using constraint programming
is naturally suited to solve them. In this paper, we focus on
logic puzzles described in the Ludii general game system and we
propose using the XCSP formalism in order to solve them with
any CSP solver.

Index Terms—Knowledge Representation, Constraint Pro-
gramming, General Game AI.

I. INTRODUCTION

Since the Nikoli company1 publishes many puzzles in
different newspapers, such as the well-known Sudoku, solving
pure deduction puzzles (mainly Japanese logic puzzles [1])
became a widespread pastime around the world.

In the context of General Game Playing (GGP), where
artificial agents have to be capable of playing a wide variety
of games (including puzzles) [2], Monte Carlo Tree Search
(MCTS) [3] is now considered as one of the best approaches
in the absence of domain specific knowledge [4]. For puzzles,
two main previous works on MCTS exist. The first one, called
Single Player MCTS used in the SameGame player has been
introduced in [5]. This variant adds a new term in the UCB
formula, and uses a heuristically guided default policy for
simulations in order to optimize their resolution. The second
work defines an adapted UCT algorithm for the combinatorial
optimisation problem of feature selection [6].

However, these two variants – and MCTS in general – do
not tend to perform well on pure deduction puzzles. The nature
of these puzzles [7] may not be suitable for this paradigm, for
instance due to most of them exhibiting only a single solution.

Regarding complexity, many of the (logic) puzzles, are
shown to be NP-complete [8]. In this context, constraint
programming (CP) appears to be a particularly effective means
of solving them [9], [10]. Moreover, CP is well-studied,
leads to highly explainable solutions, and finding solutions
is typically efficient [11]. In this paper, we present how the

1Nikoli: nikoli.co.jp/en/puzzles/

General Game system Ludii [12] can model and play any logic
puzzle through the XCSP formalism [13], enabling the use of
any compatible state-of-the-art solver to efficiently solve them.

II. LUDII AND XCSP

In this section, we briefly describe Ludii and XCSP, as well
as the translation process from Ludii to XCSP for puzzles.

A. Ludii

Within the context of the Digital Ludeme Project2 [14], a
new general game system called Ludii was recently proposed.
This system is based on a ludemic modelisation and a class
grammar approach for games [15].

In Ludii, a game is given by a 3-tuple of ludemes G =
〈Mode,Equipment ,Rules〉. Mode denotes a finite set of k
deterministic players. Equipment = 〈Ct, Cp〉 denotes a set
of containers Ct, and a set of components Cp. Finally, Rules
defines the operations of the game, which is split in three
distinct parts: start , play , and end .

In contrast to the standard General Game system using
the Game Description Language (GDL) [16], the ludemic
approach offers the capability to model puzzle rules. Each
ludeme encapsulates the concepts commonly used like arith-
metic operators, inequality between many grid cells or specific
regions (row, column, etc). An example Ludii description for
a Sudoku puzzle on a 4×4 grid is provided in Figure 1, with
the puzzle itself depicted in Figure 2.

Ludii provides many benefits relative to GDL. Among them,
the description of the games are self-explanatory to non-
specialist readers and all games available in the system can be
played by both humans and/or AI. Moreover, even if Ludii uses
MCTS as the core method for AI move planning, the structural
composition of the games, and more particularly puzzles, can
be exploited to make use of different paradigms such as CP.

B. XCSP

XCSP3 [13] is a recent format to build integrated repre-
sentations of combinatorial constrained problems. This new
format is able to deal with mono/multi optimisation, many
types of variables (integer, symbolic, graph, set, multi-set,

2Digital Ludeme Project: http://www.ludeme.eu/
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

1 (game "Sudoku 4x4"
2 (mode 1)
3

4 (equipment {
5 (SudokuBoard 2)
6 (number P1 {1 2 3 4})
7 })
8

9 (rules
10 (start {
11 (place
12 {4 1 3 3 1}
13 {1 5 7 13 15}
14)
15 })
16

17 (play (to {1 2 3 4} (empty)))
18

19 (if (equal (count (empty)) 0)
20 (end
21 (if (and {
22 (allDifferent (Row 0))
23 (allDifferent (Row 1))
24 (allDifferent (Row 2))
25 (allDifferent (Row 3))
26 (allDifferent (Column 0))
27 (allDifferent (Column 1))
28 (allDifferent (Column 2))
29 (allDifferent (Column 3))
30 (allDifferent (set {0 1 4 5}))
31 (allDifferent (set {2 3 6 7}))
32 (allDifferent (set {8 9 12 13}))
33 (allDifferent (set {10 11 14 15}))
34 })
35 (result 1 Win)
36 (result 1 Loss)
37)
38)
39)
40)
41)

Fig. 1. Game description of a Sudoku puzzle on a 4×4 grid in Ludii.

3 1

1 3

4

Fig. 2. Example of a Sudoku puzzle on a 4×4 grid.

etc.), cost functions, reification, views, annotations, variable
quantification, distributed, probabilistic and qualitative rea-
soning. The new format is made compact, highly readable,
and easy to parse. Similar to the philosophy of ludemes
this format allows us to encapsulate the structure of the
problem models, through the possibilities of declaring arrays
of variables, and identifying syntactic and semantic groups of
constraints. A competition for solvers using the XCSP format
is organised annually,3 and as a result of this, most of the major
constraint solvers developed by the CP community support
XCSP. Accordingly, an XCSP instance can be solved using
many different efficient solvers, including Abscon, Choco,
Oscar and SAT4J to name of few. A website (xcsp.org) is

3XCSP competition: http://www.xcsp.org/competition

1 <instance format="XCSP3" type="CSP">
2 <variables>
3 <array id="x" size="[4][4]"> 1..4 </array>
4 </variables>
5 <constraints>
6

7 <instantiation class="hints">
8 <list> x[0][1] x[1][1] x[1][3] x[3][1] x[3][3]</list>
9 <values> 4 1 3 3 1 </values>

10 </instantiation>
11

12 <group>
13 <allDifferent> %... </allDifferent>
14 <args> x[0][] </args>
15 <args> x[1][] </args>
16 <args> x[2][] </args>
17 <args> x[3][] </args>
18

19 <args> x[][0] </args>
20 <args> x[][1] </args>
21 <args> x[][2] </args>
22 <args> x[][3] </args>
23

24 <args> x[0..1][0..1] </args>
25 <args> x[0..1][2..3] </args>
26 <args> x[2..3][0..1] </args>
27 <args> x[2..3][2..3] </args>
28 </group>
29 </constraints>
30 </instance>

Fig. 3. Game description of a Sudoku puzzle on a 4×4 grid with XCSP.

1 <instantiation id=’sol1’ type=’solution’>
2 <list> x[] </list>
3 <values>
4 3 4 1 2 2 1 4 3 1 2 3 4 4 3 2 1
5 </values>
6 </instantiation>

Fig. 4. Solution of the XCSP instance in Figure 3.

developed conjointly with the format, which contains many
models and series of instances, as well as different tools such
as parsers in Java and C++.

C. From Ludii to XCSP

A Constraint Satisfaction Problem (CSP) consists of a set of
variables – each associated with a domain of possible values
– and a set of constraints that link the variables and define
allowed combinations of values among them.

Constraints can have several forms: two basic forms of
them are (i) enumerating the list of allowed/forbidden tuples
between variables and (ii) using common simple constraints
in intention such as =, 6=, <,≤, etc. Moreover, since the mid
90’s, the concept of so-called global constraints has been
introduced. Such constraints aim to improve the succinctness
of constrained structures present in different problems, and are
associated with more powerful filtering algorithms that can
take into account the specificity of the formulated constraint
to further reduce the domains of the variables, boosting the
subsequent search for a solution. The first introduced and most
famous global constraint is allDifferent , which states that each
variable in its scope must take values different from all other
ones.

Interestingly, logic puzzles very often exhibit structure that
can be encoded into global constraints. Furthermore, in Ludii,
the library provides some ludemes similar to the main global
constraints. For example, the global constraint allDifferent is
also used as a ludeme in Ludii (e.g. Figure 1), making the
translation process easier.

Thanks to this proximity between the two languages, a
translation process from Ludii to XCSP is possible in order to
use the solution of the CSP problem generated as a sequence
of moves for the Ludii game. Note that our study is restricted
to one-player games (Mode = {1}) using a single container
(|Ct| = 1).

The variables and their domains are extracted from the
Equipment of a Ludii Game G. Each CSP variable v is
generated from each grid cell of the container. The domain
of each variable corresponds to the set Cp.

The generation of the constraints is obtained from the Rules
of G. However, for the initial state (start rules) and the
terminal state (end rules), the process is different. For puzzles,
only the ludeme place is used to put each component on
different grid cells. This ludeme can easily be translated into
constraints that assign the initial values to the corresponding
variables. For the terminal state, each ludeme associated with a
global constraint in the XCSP formalism is translated directly
using the subset of variables corresponding to the region define
on the ludeme. As an example, the translation of the 4×4
Sudoku described in Figure 1 is given in Figure 3.

In this example, the lines 7 to 10 correspond to the start
rules in G, and the lines between 12 to 28 correspond to
the end rules, each of them generated from the ludeme
allDifferent on different regions.

The solution provided by the CSP solver is translated into a
sequence of Moves for the Ludii system. For each assignment,
if the value associated is different to 0 (corresponding to an
empty cell) and if in the start rules no component is placed in
the grid cell corresponding to the variable assigned, we apply
a move to add the component corresponding to the value to
the grid cell.

As an example, the CSP solution to the XCSP instance
is given in Figure 4. The corresponding sequence of moves
is: Add(0,3), Add(2,1), Add(3,2), Add(4,2),
Add(6,4), Add(8,1), Add(9,2), Add(10,3),
Add(11,4), Add(12,4), Add(14,2).

III. EXPERIMENTS

This section describes a number of experiments on different
puzzles modelled with the ludemic approach.

A. Setup

In this section, we experiment with the translation and
solving processes on some logic puzzles: Futoshiki, Latin
Square, Magic Square, N Queens problems, Nonogram and
Sudoku. We provide the time used for each process and the
size of the XCSP instance obtained by the translation process
when given the number of variables, the size of the domain of
each variable and the number of constraints. All experiments

were conducted on a single core of an Intel(R) Core(TM)
i7-8650U CPU @ 1.90 GHz, 2112 MHz with 16GB RAM.
To solve the XCSP instance, we use an open-source Java-
written Constraint Solver called Abscon, mainly developed
by Christophe Lecoutre. Ludii and Abscon are running with
the Java SE Development Kit 11.

B. Results

First, as illustrated by Table I, translations from Ludii to
XCSP exhibit negligible runtimes, since they never exceed 1
second. We did not report them in a detailed manner due to
lack of space, but we have tried larger sizes of puzzles and
converting data towards XCSP formalism does not appear to
be a barrier to this approach.

For the solving part, we have deliberately tested games
with different sizes, in order to get an idea of the practical
limits of the approach. For example, converting and solving
Latin Square (size 100) requires more than a minute, which
can be seen as too long for some applications. However, all
puzzles whose size makes them reasonably doable by humans
are entirely solved within a few seconds : N Queens (sizes
4-8), Nonogram (sizes 5-32), Sudoku (sizes 9-25), etc.

C. Discussion

These results allow us to apply online dynamic applications
for all “human-sized” puzzles. For instance, Ludii can pro-
pose a series of (potentially randomly generated) puzzles and
provide help, or prevent the user from mistakes, in a dynamic
way through the use of CP solvers.

We intend to use Ludii to model the full range of Nikoli
puzzles in a close future, and the translation proposed here
is generic; once a new (NP-complete) puzzle is modelled in
Ludii, it can be supported by a CP solver for the previous
proposed applications (provide help and/or prevent mistakes),
without requiring additional implementation work in most
cases.

It is important to keep in mind that we “only” propose to
translate directly a puzzle from Ludii to an XCSP instance.
Here no optimisation approaches such as heuristics or sym-
metries are used. This first approach only takes advantage of
the global constraints.

Consequently, a promising future work would be to include
some data for the ludemes used to describe the puzzles in order
to make it easier to apply some optimisations commonly used
in CSP. As an example, the current direct translation for the
Knight’s Tour (8×8) on XCSP is done in 2 seconds. However
Abscon requires 123 seconds to solve it. Handcrafting simple
symmetries in the instance reduces the solving time to 19
seconds.

IV. CONCLUSION AND FUTURE WORK

This first work is a good example of cross-fertilisation.
Indeed, while the Ludii system is now able to make use of
decades of algorithmic progresses in Constraint Programming,
just by stating puzzles, the XCSP ecosystem enriches its

TABLE I
RESULTS TO GENERATE AND SOLVE PUZZLES WITH LUDII, XCSP AND Abscon (TIME IN SECONDS)

Game Board Size Ludii to XCSP in #Variables Domain Size #Constraints Solved in

Futoshiki

4×4 0.301 16 4 12 2.437
5×5 0.303 25 5 21 2.640
6×6 0.311 36 6 22 2.671
9×9 0.341 81 9 58 2.718

Latin Square
5×5 0.010 9 5 10 2.265

10×10 0.017 100 10 20 2.531
100×100 0.121 10,000 100 200 142.377

Magic Square
3×3 0.012 9 9 8 2.421
5×5 0.013 25 25 12 2.656
7×7 0.015 49 49 16 3.406

N Queens 4×4 0.011 16 2 61 3.125
8×8 0.011 64 2 255 4.002

Nonogram

5×5 0.013 25 2 10 1.328
10×10 0.013 100 2 20 1.654
20×20 0.014 400 2 40 1.843
32×32 0.015 1,024 2 64 2.656

Sudoku
9×9 0.010 81 9 27 2.421

16×16 0.012 256 16 48 2.734
25×25 0.014 625 25 75 3.127

content of instances by providing new benchmarks for the CP
community.

In the future, the approach applied here on NP-complete
puzzles could be extended to P-SPACE ones, such as Sokoban
[17]. In addition, this work paves the way for a potential
application of Constraint Programming on any multi-player
games modelled on Ludii, in a similar spirit to WoodStock
[18] – a constraint-based approach for General Game Playing,
and currently the best GGP agent, only compatible with GDL.

As another working track, a related work on [19], pro-
poses another approach called Deductive Search to solve
logic puzzles. This approach is a breadth-first, depth-limited
propagation scheme for the constraint-based solution of deduc-
tion puzzles, using simple logic operations found in standard
constraint satisfaction solvers. This approach is particularly
efficient for puzzles and has to be compared with the best
CSP solvers in order to improve the resolution to any puzzle
available on Ludii.

ACKNOWLEDGMENT.

This research is part of the European Research Council-
funded Digital Ludeme Project (ERC Consolidator Grant
#771292) run by Cameron Browne at Maastricht University’s
Department of Data Science and Knowledge Engineering.

REFERENCES

[1] H. Collins, The Times Japanese Logic Puzzles: Hitori Hashi, Slitherlink
and Mosaic, London, 2006.

[2] J. Pitrat, “Realization of a general game-playing program.” in IFIP
Congress, 1968, pp. 1570–1574.

[3] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–49,
2012.

[4] H. Finnsson and Y. Björnsson, “Learning simulation control in general
game-playing agents,” in Proceedings of AAAI’10, 2010, pp. 954–959.

[5] M. P. D. Schadd, M. H. M. Winands, M. J. W. Tak, and J. W.
H. M. Uiterwijk, “Single-player monte-carlo tree search for samegame,”
Know.-Based Syst., vol. 34, pp. 3–11, Oct. 2012.

[6] R. Gaudel and M. Sebag, “Feature selection as a one-player game,” in
Proceedings of ICML’10, 2010, pp. 359–366.

[7] C. B. Browne, “The nature of puzzles,” Game & Puzzle Design, vol. 1,
no. 1, pp. 23–34, 2015.

[8] D. M. Costa, “Computational complexity of games and puzzles,” CoRR,
2018. [Online]. Available: http://arxiv.org/abs/1807.04724

[9] B. O’Sullivan and J. Horan, “Generating and solving logic puzzles
through constraint satisfaction,” in Proceedings of AAAI’07, Canada,
2007, pp. 1974–1975.

[10] M. Çelik, H. Erdogan, F. Tahaoglu, T. Uras, and E. Erdem, “Comparing
ASP and CP on four grid puzzles,” in Proceedings of the 16th Inter-
national RCRA Workshop: Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion, 2009.

[11] J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,” J.
Log. Program., vol. 19/20, pp. 503–581, 1994.

[12] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.
Winands, and C. Browne, “Ludii - the ludemic general game system,”
CoRR, vol. abs/1905.05013, 2019.

[13] F. Boussemart, C. Lecoutre, and C. Piette, “XCSP3: an integrated
format for benchmarking combinatorial constrained problems,” CoRR,
2016. [Online]. Available: http://arxiv.org/abs/1611.03398

[14] C. Browne, “Modern techniques for ancient games,” in IEEE Conference
on CIG. IEEE, 2018, pp. 490–497.

[15] C. B. Browne, “A class grammar for general games,” in Advances in
Computer Games, ser. LNCS, vol. 10068, 2016, pp. 167–182.

[16] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General game playing: Game description language specification,” 2008.

[17] R. A. Hearn and E. D. Demaine, “Pspace-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint logic
model of computation,” CoRR, 2002.

[18] F. Koriche, S. Lagrue, E. Piette, and S. Tabary, “Constraint-based sym-
metry detection in general game playing,” in Proceedings of IJCAI’17,
2017, pp. 280–287.

[19] C. Browne, “Deductive search for logic puzzles,” in IEEE Conference
on CIG, 2013, pp. 359–366.

