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Abstract

In many games, moves consist of several decisions made by the player. These de-
cisions can be sometimes viewed as separate moves, which is a common practice
in multi-action games due to efficiency reasons. So far, the application of splitting
moves has been mostly limited to such straightforward cases.

In the thesis, we generalize the concept of splitting and offer the possibility
of arbitrary splits applied in any game. We design an algorithm that is an adap-
tation of Monte-Carlo Tree Search to effectively work with split moves, including
enhancements such as action-based heuristics. We implement a General Game Play-
ing agent within the Regular Boardgames system, where moves can be automatically
split with different granularity based on any abstract game description. Our generic
and efficient implementation allows conducting a pioneering study of agents playing
on different game tree structures, aiming to answer what is the practical impact of
the split design and how to get maximal benefits from it.

W grach często pojedyncze ruchy składają się z ciągu decyzji podejmowanych
przez graczy. Poszczególne decyzje mogą czasem być traktowane jako oddzielne ru-
chy, co jest popularną praktyką w grach typu multi-action w celu uzyskania lepszej
wydajności. Do tej pory podziały ruchów były wykorzystywane tylko w tego typu
oczywistych sytuacjach.

W tej pracy uogólniamy ideę podziału ruchów i proponujemy możliwość zasto-
sowania dowolnej strategii podziału ruchów w każdej grze. Przystosowujemy algo-
rytm Monte-Carlo Tree Search, wraz z heurystykami, do efektywnego działania z
częściowymi ruchami. Implementujemy agenta General Game Playing wykorzystu-
jącego system Regular Boardgames, który pozwala na automatyczne generowanie
częściowych ruchów z podziałami różnej gęstości na podstawie opisu reguł gry. Nasza
uogólniona implementacja jako pierwsza pozwala na wszechstronne i bezpośrednie
porównanie ze sobą agentów bazujących na różnych strukturach drzewa tej samej
gry. Badając to, próbujemy odpowiedzieć na pytania jaki jest wpływ użycia podzie-
lonych ruchów na wyniki agentów oraz jak maksymalnie wykorzystać potencjał tej
metody.
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Chapter 1

Introduction

1.1 Monte-Carlo Tree Search and General Game Play-
ing

Benefits of simulation-based, knowledge-free, open-loop algorithms such as Monte-
Carlo Tree Search (MCTS) [18] and Rolling Horizon Evolutionary Algorithm [25]
are especially suited to work within environments with many unknowns. In partic-
ular, they are widely used in General Game Playing (GGP) [12], a domain focusing
on developing agents that can successfully play any game given its formalized rules,
which was established to promote work in generalized, practically applicable algo-
rithms [7, 13]. Initially based entirely on Stanford’s Game Description Language
(GDL) [21], GGP expands over time as new game description formalisms are being
developed, e.g., Toss [16], GVG-AI [24], Regular Boardgames [20], and Ludii [26].

Recent advances in search and learning support the trend of generalization, fo-
cusing on methods being as widely applicable as possible. Deep Q-networks were
applied to learn how to play classic Atari games and achieved above human-level
performance on most of the 49 games from the test set [22]. More recently, Alp-
haZero, shown how to utilize a single technique to play Go, Chess, and Shogi on
a level above all other compared AI agents [32]. This work also shows advances of
MCTS on a field so far reserved for the min-max family of algorithms [3].

In the trend of developing enhancements for MCTS [4, 1], we tackle the problem
of influencing the quality of the search by altering the structural design of the game
tree itself. In many games, a player’s turn consists of a sequence of choices that can
be examined separately. A straightforward representation is to encode these choices
as distinct moves, obtaining a split game tree, instead of using a single move in the
orthodox design. The potential applications go beyond games, as the method can be
used for any kind of problem that is solvable via a simulation-based approach and
its representation allows splitting of moves.

7



8 CHAPTER 1. INTRODUCTION

1.2 Related work

The idea of splitting moves is well known, but apparently, it was not given proper
consideration in the literature, being either used naturally in trivial cases or re-
strained to follow the human-authored heuristic, both cases in rather limited aspects
given how general applications of split technique can be.

For the particularly complex environments, split is regarded as natural and
mandatory. This technique is widely used for Arimaa, Hearthstone, and other multi-
action games [9, 15, 30]. Here, the reduced branching factor is considered to be the
main effect, as otherwise, programs could not play such games at a proper level. The
case of Amazons is the only one that we have found where agents playing respec-
tively on split and non-split representations were compared against each other [17].
For multi-action games such as real-time strategies, where the ordering of actions
is unrestricted, Combinatorial Multi-armed Bandits algorithms are often employed
[23]. Using actions separately as moves in the MCTS tree was also considered under
the name of hierarchical expansion [30]. So far, splitting was applied only for such
multi-action games, where it is possible and natural to divide a turn into separate
moves and process them normally, that is, without the need of modifying search
algorithms.

A practical application of splitting is found in GGP, where many games are
manually (re)encoded in their split variants just to improve efficiency. For example,
some split versions of games like Amazons, Arimaa, variants of Draughts, or Pentago
exist in GDL. However, it is generally unknown how using such versions affect the
agents’ playing strength, especially apart from efficiency. Additionally, splitting via
artificial turns causes some repercussions, in e.g., calculating game statistics, han-
dling the turn timer (an agent gets the same time for each move, so he gets more
total time as he performs more moves that logically form the same turn).

A related topic is move groups [31, 6, 36], where during MCTS expansion chil-
dren of every tree node are partitioned into a constant number of classes guided
by a heuristic. The basic idea of move groups is to divide nodes of the MCTS tree
into two levels, creating intermediate nodes that group children belonging to the
same class. There is no reported application of move groups beyond Go, Settlers of
Catan [29], and artificial single-player game trees for maximizing UCT payoff. From
the perspective of splitting, (nested) move groups are a side effect, and not every
partition can be obtained by splitting.

As splitting just alters the game tree, it is compatible with any other tree search
algorithm that uses this game tree as the underlying structure. In particular, it affects
action-based heuristics such as MAST and RAVE [10], which operate on moves. But
unlike usual techniques, in most cases the split design improves efficiency, thus it is
beneficial if it just leaves the behavior of algorithms unchanged.

To summarize, splitting was so far applied only for multi-action games, where
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split moves can act as regular moves and are defined manually by a human decision.
In the literature, a direct comparison of both approaches was reported only for one
game, and fundamental questions remained open, such as: is it generally better to
use split moves, to what extent it affects the playing strength, and how to effectively
split single-action games. Answers to these questions could change the default way
of processing many games if we find out that splitting (or non-splitting) improves
the results. A proper study of these questions requires developing methods dealing
with split moves and a comprehensive framework for performing experiments with
many variants.

1.3 Contribution

We focus on the general technique of altering the game tree by introducing split and
its possible effects, rather than its application to a particular game combined with
expert knowledge. This thesis is devoted to the development and implementation of
a general MCTS agent supporting split moves. The agent is a prototype primarily
designed to conduct pioneering research on the topic.

We propose the semisplit algorithm, which is a general adaptation of MCTS
that works with arbitrarily split moves. In particular, this allows splitting moves
of games that are not considered multi-action, where moves cannot be split in a
straightforward way. We also propose several ways of adapting action-based heuris-
tics – common MCTS general enhancements – to work with game trees with split
moves. This includes state-of-the-art improvements of these methods. Due to that,
we are able to test the effect of splitting also beyond the pure MCTS algorithm. We
propose many available variants of the algorithm, such as mixing the semisplit and
the orthodox designs for different phases of MCTS.

The algorithm is implemented within a generic agent for the Regular Boardgames
(RBG) GGP system [20] – a universal GGP formalism for the class of finite deter-
ministic games with perfect information. In RBG, a few split strategies of different
granularity are provided and tested, which split moves in an automatic way basing
on the given general game description. The agent uses the RBG compiler, which for
any given game, generates a reasoner computing moves and/or semimoves.

A challenging task was to keep the high and comparable efficiency of the agent
in all variants. To utilize the full potential of fast RBG reasoning, the implementa-
tion of each part of the agent must meet its efficiency level, as otherwise, it would
become a performance bottleneck. We use, for instance, original data structures
(such as the hash map for contextual action-based heuristics) and non-standard
implementations (e.g., just-in-time and conditional compilation, custom allocating
methods, dedicated hash maps). Combined with the efficiency of the RBG reasoning
algorithms [19], the agent is arguably the fastest existing GGP agent, which allows
more extensive experiments. The utilization of specific optimization possibilities ad-
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mitted by particular variants of the algorithm allows more fair comparisons, making
differences in the efficiency more visible in the results.

The experiments are conducted on a set of classic board games, comparing
agents using both orthodox and split designs. We test a number of variants of the
algorithm, applying split moves selectively to different phases of MCTS, and includ-
ing action-based heuristics to observe the behavior also for non-basic MCTS. From
the results, we identify the most beneficial variants and conclude that splitting moves
can greatly improve the player’s strength.

This work is a part of a collective research with Jakub Kowalski, Maksymilian
Mika, Jakub Sutowicz, Marek Szykuła, and Mark Winands. The contribution of the
author is focused on the development and implementation of the agent, which is a
major ingredient of that study.

The thesis is structured as follows: Chapter 2 describes the abstract concept
of semisplit and defines the algorithm and its variants. Chapter 3 is devoted to the
implementation of the agent within the Regular Boardgames framework. Chapter 4
contains the guide how to use the agent and set its parameters. Chapter 5 shows
the experimental results. We conclude in Chapter 6 with main corollaries and future
research directions.



Chapter 2

Semisplit algorithm

We describe the abstract concept of playing with split moves and the general semis-
plit algorithm. Here we consider it independently on a particular implementation,
where games and moves get a concrete representation. We start with theoretical
definitions and then describe the algorithm with its variants.

2.1 Semisplit game trees

2.1.1 Abstract game

We adapt a standard definition of an abstract turn-based game [28] to our goals.
A finite deterministic turn-based game with perfect information (later called simply
game) G is a tuple (playersG , TG , controlG , outG), where: playersG is a finite non-
empty set of players; TG = (V,E) is a finite directed tree called the game tree, where
V is the set of nodes called game states and E is the set of edges called moves,
Vn ⊂ V is the set of inner nodes called non-terminal states, and Vt ⊆ V is the set of
leaves called terminal states; controlG : Vn → playersG is a function indicating the
current player at the given state; outG : Vt × playersG → R is a function indicating
the final score of each player. For a non-terminal state s ∈ Vn, the set of legal moves
is the set of outgoing edges {(s, t) ∈ E | t ∈ V }. During a play, the current player
controlG(s) chooses one of its legal moves. The game tree which is rooted at an
initial state s0. A play starts from s0 and ends at a terminal state, which finally
must happen because these are precisely the leaves of the game tree. We assume
that all states are reachable in the game tree from s0.

Two games are isomorphic if there exist bijections between the sets of players
and between the game trees that preserve at each state the current player (if the
state is non-terminal) or the score (if the state is terminal). For a state s ∈ V , the
subgame Gs is the game with the tree obtained from TG by rooting at s and removing
all the unreachable states from s.

11
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2.1.2 Split-equivalence

For a given game G, we can roll up all the states that have assigned the same current
player and form a connected component. Then, instead of a sequence of moves, the
current player performs just one move. We define the rolled-up game of G, where
each maximal connected component S ⊆ Vn of non-terminal states with the same
current player is replaced with one new state vS , the incoming edge to the (unique)
root of S now goes to vS , and all the outgoing edges from S now begin at vS . Two
games are split-equivalent if their rolled-up games are isomorphic. Obviously, split-
equivalent games are strategically the same, except for technical differences of the
execution (e.g., turn time limit, counting turns).

2.1.3 Abstract semisplit game

Going deeper into a particular representation of a move, it usually can be parti-
tioned into a sequence of smaller pieces, which we call semimoves; e.g., they can be
atomic actions, artificial groups, or, in the extreme case, even single bits of a move
representation. Computing semimoves can be, but not always is, computationally
easier than full moves and sometimes may reveal structural information desirable in
a knowledge-based analysis.

Often a natural and most effective splitting does not lead to a split-equivalent
variant of the game, because not every available sequence of easily computed semi-
moves can be completed up to a legal move. This especially concerns single-action
games, but also splits inferred automatically, where without prior knowledge it is
difficult to determine if we obtain a proper split-equivalent game.

Example 1. In Chess, a typical move consists of picking up a piece and choosing
its destination square. It would be much more effective first to select a piece from the
list of pieces and then a square from the list of available destinations computed just
for this piece than to select a move from the list of all legal ones, which is usually
much longer. However, we may not be able to make a legal move with the selected
piece, e.g., because the king will be left under check (see Fig. 2.1).

A remedy could be checking if each semimove is a prefix of at least one legal
move. However, in many cases, this can be as costly as computing all legal moves,
losing performance benefits or even decreasing efficiency. Instead, we can work on
semisplit games directly.

In contrast with split-equivalent games, we require a different game definition,
including additional information about intermediate states. We extend the definition
of a game to a semisplit game as follows. Let V be now the disjoint union of Vn, Vt,
and the intermediate states Vi. The set of non-terminal states Vn is a subset of inner
vertices of the game tree, terminal states Vt is a subset of leaves, and Vi may contain
states of both types. The states in Vn and Vt are called nodal. A semisplit game
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must satisfy that the initial state s0 is nodal, and for every non-terminal s ∈ Vn, the
subgame Gs contains at least one terminal state. The latter condition ensures that
from each nodal state, a terminal state is reachable. Yet, for an intermediate state,
there may be no nodal state in its subgame; then this state is called dead. An edge
is called a semimove. A submove is a path where nodal states can occur only at the
beginning or at the end, and in the middle, there are only intermediate states. A
semimove is a submove of length 1. Then, a move is submove between two nodal
states.

The rolled-up game of a semiplit game is obtained by removing all dead states
and replacing each maximal connected component rooted at a non-terminal state
and containing only semistates below with one non-terminal state. A semisplit game
G′ is equivalent to a game G if the rolled up game of G′ is isomorphic to G. Then,
splitting a game means deriving an equivalent semisplit game.

Player to move: white

8 0Z0Z0Z0Z
7 OpZ0j0Z0
6 0O0Z0Z0s
5 Z0Z0Z0Z0
4 0ZpZ0a0S
3 Z0Z0Z0ZK
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

a7

a8Q

�+

a8R

�+

a8B

�+

a8N

�+

b6 Rh4

h6

�+

h5

�+

g4 f4

Kh3

g4

�+

g3 g2

�+

h2

. . .

a7

. . .

b6 Rh4

N

h6

�+

h5

�+

S W

g4 f4

E

. . .

Kh3

Figure 2.1: A Chess position (top) and the fragments of two semisplit game trees
of smaller (left) and larger (right) granularity corresponding to the current game
state. There are 8 legal moves in total denoted in the long algebraic notation
({a7-a8Q, . . . ,Kh3-g2}), which form 8 edges in the standard game tree. Nodal states
are marked with a double circle; ��+ indicates passed non-check king test.

An example of semisplit variants of Chess is shown in Fig. 2.1. There are frag-
ments of the game tree with intermediate states between nodal ones.
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2.2 The algorithm

2.2.1 Basic semisplit MCTS

Algorithm 1 Basic semisplit random simulation.
Input: s – game state
1: function SemisplitSimulation(s)
2: while not s.IsTerminal() do
3: m← SemisplitRandomMove(s)
4: if m = None then return None . s is dead
5: s← s.Apply(m)

6: return s.Scores()

7: function SemisplitRandomMove(s)
8: for all a ∈ Shuffle(s.GetAllSemimoves()) do
9: s′ ← s.apply(a)

10: if s′.IsNodal() then return a
11: m← SemisplitRandomMove(s′)
12: if m 6= None then return Concatenate(a,m) . Found legal move

13: return None . No legal move

In the following description, we use a standard terminology [2] and focus on the
differences with the orthodox MCTS. The simulation phase is shown in Alg. 1. Draw-
ing a move at random is realized through backtracking (SemisplitRandomMove).
Given a game state, we choose and apply semimoves in the same way as moves in
orthodox MCTS, but we keep the list of legal semimoves computed at each level.
When it happens that the current intermediate state does not have a legal semimove
(is dead), we backtrack and try another semimove. Thus, we always find a move if it
exists, and every legal move has a positive chance to be chosen, although the proba-
bility distribution may be not uniform. A single simulation (SemisplitSimulation)
just uses the modified random move selection. Note that it can fail (return None),
which happens if called for a dead state.

The semisplit MCTS is shown in Alg. 2. As orthodox MCTS, it uses the UCT
policy in the selection phase [18]. But, in contrast, the semisplit MCTS uses both
nodal and intermediate states as tree nodes. However, dead states are never added to
the MCTS tree, which guarantees that we can reach a terminal state starting from
any node in the MCTS tree. The expansion begins with the selection of an untried
semimove. If the next state turns out to be dead, the semimove is removed from
the list in the node, and the search goes back to the MCTS tree, so other untried
semimoves are chosen; it can happen that all untried semimoves lead to dead states
and thus the node becomes fully expanded, so the search continues according to the
UCT policy.

The algorithm has two variants, raw and nodal, which differ in the expansion
phase. The raw variant adds just one tree node as usual, either intermediate or nodal.
However, this can leave semisplit MCTS behind orthodox MCTS, as a single node
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Algorithm 2 Basic semisplit MCTS.
1: function MCTSIteration( )
2: v ← TreeRoot()
3: while not v.State().IsTerminal() do
4: if v.FullyExpanded() then
5: v ← v.UCT()
6: else
7: a1 ← RandomElement(v.UntriedSemimoves())
8: (v′, scores)← Expand(v, a1)
9: if scores = None then continue

10: Backpropagation(v′, scores)
11: return
12: Backpropagation(v, v.State().Scores())

Input: v – leaf node in MCTS tree
Input: a1 – selected untried semimove
13: function Expand(v, a1)
14: s← v.State().Apply(a1)
15: scores ← SemisplitSimulation(s)
16: if scores = None then
17: v.RemoveSemimove(a1)
18: return None

19: c← CreateNode(s)
20: v.AddChild(c, a1)
21: return (c, scores)

Input: v – last node of iteration in MCTS tree
Input: scores – final scores for each player of iteration
22: function Backpropagation(v, scores)
23: while v 6= TreeRoot() do
24: v.scoreSum ← v.scoreSum + scores[v.Player ]

25: v.iterations ← v.iterations + 1

26: v ← v.Parent()

27: v.iterations ← v.iterations + 1

in the latter corresponds to a path between nodal states in the former. The nodal
variant compensates this risk by adding that whole path during a single expansion.
Usually, the nodal variant can increase the quality of the search when these paths
are long and, in particular, cannot be exploited due to slower expansion. But, the
raw variant is slightly faster. Alg. 2 shows the raw variant, whereas Alg. 3 replaces
Expand with ExpandNodal for the nodal variant (called in Alg. 2 line 9).

There are two main reasons behind the efficiency benefits of semisplit. First, the
number of semimoves is usually smaller than the number of moves, thus we reduce the
branching factor. This particularly improves efficiency if the semimoves are cheaper
to compute. Additionally, we have fewer choices to consider, which reduces the cost
if we look at their statistics (e.g., in UCT or in MAST). Second, we do not always
check if a move is legal. We maintain lists of move candidates that are lazily checked
when selected so we can also benefit from having indecisive states in the semisplit
game tree. On the other hand, traversing many intermediate states and frequent
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Algorithm 3 The nodal expansion variant.
Input: v – leaf node in MCTS tree
Input: a1 – selected untried semimove
1: function ExpandNodal(v, a1)
2: s← v.State()
3: m← SemisplitRandomMove(s.Apply(a1))
4: if m = None then
5: v.RemoveSemimove(a1)
6: return None

7: m′ ← Concatenate(a1,m)

8: for all a ∈ m′ do . For all semimoves a in m′ in the order
9: s← s.Apply(a)

10: c← CreateNode(s)
11: v.AddNode(c, a)
12: v ← c

13: scores ← SemisplitSimulation(v.State())
14: return (v, scores)

backtracking can cause overhead compared to the orthodox computation.

2.2.2 Final selection

There are several policies to select the final best move to play. A common policy is
to choose one that with the best average score [37]. In the case of ties, we use the
largest number of iterations as the second criterion.

When it comes to selecting the final move to play, semisplit MCTS greedily
chooses the best move semimoves till the first nodal state. If it goes outside the
MCTS tree constructed so far, the raw variant chooses uniformly at random. This
is very rare in practice and usually happens only when the branching factor is
large enough compared to the number of iterations. In the nodal variant, this never
happens, as leaves in the MCTS tree can be only nodal states.

We also propose another strategy called final roll-up selection. The idea behind
it is that, in principle, we are mainly interested in performing the best full move
rather than the best semimoves at each consecutive level, hence we should look at
the score of the last semimove. However, there is a risk that there are semimoves
with a high but unreliable average score, due to only a small number of iterations.
Therefore, naive strategies that look just at the average score of the last semimove
give overall poor results. On the other hand, determining the sufficient number of
iterations is difficult, as the total number of iterations strongly depends on the game
(actually, the current subgame) and the computation budget. Therefore, we propose
to estimate this number based on the choice of the default greedy strategy. First,
the greedy strategy finds a move, and we take the number of iterations of its last
semimove. Then, this is multiplied by the final roll-up factor (FRF). In this way, if
FRF ≥ 1.0, final roll-up selection always chooses a move that is, in principle, not
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worse than the greedy choice – it considers only moves with a not smaller number
of iterations and the greedy choice is included. By decreasing FRF , we can increase
the chance of selecting a move with a better average score at the cost of reliability
in terms of the number of iterations. Finally, if the average score is equal to that of
the greedy move, the latter is preferred. Similarly, if the greedy selection in the raw
variant completes the move outside the MCTS tree, the final roll-up is not used.

2.2.3 Combined variants

Possible variants of semisplit MCTS involve combining both designs and using them
selectively in different phases. First, there are two variants: the orthodox design in
the MCTS tree phases (selection and expansion) together with the semisplit design
in the simulation phase, and the opposite setting. Semisplit MCTS can work also on
submoves that are dynamically obtained from concatenating semimoves.

Another proposed variant, modifying the MCTS tree phases, is the roll-up. It
uses the semisplit design with the modification as follows. Whenever a non-root
node v in the MCTS tree is fully expanded, i.e., all its children v1, . . . , vk were tried,
then the algorithm removes node v and connects its parent v′ with nodes v1, . . . , vk.
Then, nodes v1, . . . , vk become new children of node v′, and the edges to them are
submoves obtained from concatenating the submove from v′ to v and the semimove
from v to vi. In this way, the semisplit design is mainly limited to the expansion
phase, as the algorithm switches to the orthodox design in the parts of the MCTS
tree that become fully expanded.

We can slow down the rolling-up process by tuning the minimal simulation
factor (MSF ) parameter. Creating new nodes from the given node v and its children
v1, . . . , vk, as described above, is performed when v is fully expanded and condition
v.iterations ≥ k ·MSF is satisfied. Note that for MSF = 1, the full expansion of a
node is enough to roll-up, because then v.iterations ≥ k is always fulfilled. The roll-
up algorithm is shown in Alg. 4, where RollUp is executed during backpropagation
for the MCTS nodes involved in the iteration (see Alg. 6).

Algorithm 4 The roll-up procedure.
Input: v – node to roll-up
1: function RollUp(v)
2: if v.FullyExpanded() then
3: childrenCount ← v.Children().Length()
4: if v.iterationCount ≥ childrenCount ·MSF then
5: v′ ← v.Parent()
6: m← v′.Submove(v) . Get the submove from v′ to v
7: v′.RemoveChild(v)
8: for all (c, a) ∈ v.Children() do
9: m′ ← Concatenate(m,a)

10: v′.AddChild(c,m′)

11: v′.AMAF [m′]← c.AMAF [a] . If RAVE is used
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2.2.4 Action-based heuristics

MAST and RAVE

Commonly used general knowledge-free enhancements of MCTS are online-learning
heuristics, which estimate the values of moves by gathering statistics. Two general
methods are Move-Average Sampling Technique (MAST) and Rapid Action Value
Estimation (RAVE) [8, 11, 37]. For both techniques, there are many policies proposed
that differ in detail.

MAST globally stores for every move the average result of all iterations (sam-
ples) involving this move. Those values are updated after each iteration, and the
score of each move is updated as many times as the move was applied in the iter-
ation. The statistics are stored for each player separately. They are later used in
the simulation and (optionally) expansion phases in place of the random selection.
For each move from the set of all legal moves at some state, MAST defines the
probability that this move will be selected. This probability distribution is defined
depending on a particular policy, e.g. Gibb’s distribution [8], Roulette wheel [27] or
ε-greedy [35]. According to the previous research, ε-greedy is universally considered
to be the best policy [27, 35]. It is also common to assume that if the move was not
tried any time before, then its score is the maximum available reward, so it will be
preferred to play as soon as possible.

An improvement for MAST is the decaying technique [34]. It comes from the
insight that certain moves that are good in globally in the game may not be so
strong in latter phases. In other words, that the global average may be not equally
adequate for all subgames of the game. Decaying means that the weights of all the
collected samples are multiplied by the decay factor, hence new samples gathered
will have more impact on the average score. A few methods of decaying are known
and proposed in [34]: move decay takes place after the effective move is applied
in the game, batch decay applies decaying after a fixed number of simulation, and
simulation decay applies decaying after each played move (of either the agent or the
opponent). The last option was considered to be possibly the best.

Monte Carlo Tree Search needs many iterations to gather enough samples to
differentiate the most promising moves. At the beginning, many choices are made
randomly. RAVE tries to shorten this phase by storing additional statistics in nodes.
Similarly to MAST, it stores the average reward for moves, but locally in MCTS
nodes. These statistics are called All Moves As First (AMAF ). For each node, each
child with move m stores the average score (for the player of the node) from all
iterations that passed through the node and that include m played at the node or at
any place below. This is in contrast with the regular statistic of m in UCT, which is
gathered only from iterations that play m at the node. In this way, AMAF collects
much more samples, which are less reliable, however.
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The AMAF statistics are used to bias the choice in the selection phase by
modifying the UCB formula. The priority for each node is calculated as the weighted
mean of the regular average score and the average stored for all simulations. There
are many different formulas to calculate such weights [4, 8, 11, 33]. The general rule
is that, for fewer visited nodes, the statistics stored due to using RAVE are more
relevant due to a larger number of samples, but then they lose significance as they
do not distinguish between the situations where moves are played.

Algorithm 5 MAST working on semimoves.
Input: semimoves – list of semimoves to choose from
Input: player – current player
1: function ChooseSemimoveWithMAST(semimoves, player)
2: if RandomRealNumber(0, 1) ≥ ε then
3: bestSemimoves = argmaxm∈semimoves(MASTstatistics[player ].Score(m))

4: return RandomElement(bestSemimoves)

5: else
6: return RandomElement(semimoves)

Input: s – game state
7: function SemisplitMASTMove(s)
8: semimoves← s.GetAllSemimoves()
9: while not semimoves.Empty() do

10: a← ChooseSemimoveWithMAST(semimoves, s.Player())
11: s′ ← s.Apply(a)
12: if s.IsNodal() then return a
13: m← SemisplitMASTMove(s′)
14: if m 6= None then return Concatenate(a,m)

15: return None

Both MAST and RAVE can be adapted to semisplit game trees and work in the
pure semisplit design in a straightforward way, in the same manner as in the ortho-
dox design. Alg. 5 shows the modified move selection in the simulation phase, where
a move is selected with the ε-greedy policy. We use SemisplitMASTMove in place
of SemimoveRandomMove that is called in Alg. 1, line 3. If statistics are used to
select move in expansion phase, then line 7 of Alg. 2 is also replaced with Choos-
eSemimoveWithMAST(v.UntriedSemimoves(), v.Player()). RAVE just mod-
ifies the UCT selection (Alg. 2, line 5) and backpropagation (Alg. 6), and includes
transferring AMAF values in the case of the roll-up variant (Alg. 4, line 11).

Split variants

In the combined variants, necessarily, both MAST and RAVE require some adjust-
ments, which rely on dividing (sub)moves into semimoves or fusing semimoves into
moves. Moreover, dividing moves into semimoves also give alternative strategies in
the orthodox design.

The basic modification of MAST adapted to semisplit design is called MAST-
split. It simply stores separate statistics for each semimove instead of for each move
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Algorithm 6 Variants of backpropagation, depending on whether MAST, RAVE,
or roll-up is used, respectively.
Input: v – last node of iteration in MCTS tree
Input: scores – final scores for each player of iteration
Input: appliedSubmoves – list of submoves applied in simulation phase
1: function Backpropagation(v, scores, appliedSubmoves)
2: scores ← state.Scores()
3: for all (m, player) ∈ appliedSubmoves do . with MAST
4: MASTstatistics[player ].Update(m, scores) . with MAST

5: while v 6= TreeRoot() do
6: v.scoreSum ← v.scoreSum + scores[v.Player ]

7: v.iterations ← v.iterations + 1

8: v′ ← v.Parent()
9: m← v′.Submove(v) . with MAST or RAVE

10: MASTstatistics.Update(m, scores, v′.Player()) . with MAST

11: appliedSubmoves[v′.Player()].Append(m) . with RAVE
12: for all (c, a) ∈ v.Children() do . with RAVE
13: if a ∈ appliedSubmoves[v ′.Player()] then . with RAVE
14: v′.AMAF [a].Update(score[v′.Player()]) . with RAVE

15: RollUp(v) . with roll-up

16: v ← v′

17: TreeRoot().iterations ← TreeRoot().iterations + 1

or submove that can appear during the computation. Then, while evaluating the
score of a submove, we need to combine somehow the result from the scores of
the included semimoves. Here we propose the arithmetic mean of the scores of the
semimoves; however, if a semimove has not been tried, then the maximum reward
is returned as the final score of the whole submove. MAST-split can be applied to
any variant of MCTS.

RAVE-split works similarly, i.e., it splits every submove into single semimoves.
Statistics for a semimove in a tree node are updated if this semimove was used
explicitly at the node or later in the iteration, either directly or possibly as a part
of a submove. RAVE-split is easily enabled only in combinations using the semisplit
design in the selection and expansion phases, i.e., when the domain of semimoves in
these phases is the same as that of RAVE-split. It does not seem to be effective to if
the domain of submoves in the MCTS tree phases is different than the set of single
semimoves, because we would have to store the statistics separately for semimoves
at each node and evaluate scores of submoves – the latter involves additional search
for the statistics of particular semimoves.

Depending on the implementation, split variants can be much faster than regular
heuristics due to much a smaller domain of semimoves (i.e., we can use faster data
structures for storing statistics). However, obtained samples are less reliable, as
semimoves carry less information than full moves.
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Join variants

In opposition to the variants which rely on splitting moves into semimoves, there
is also the option to combine semimoves into full moves. The main motivation for
them is enabling RAVE to work in the variants with the orthodox tree design.

MAST-join and RAVE-join store statistics only for whole moves. After each
iteration, all paths between nodal states are treated as moves, no matter which
design is used. Of course, they are available only the variants where we do not need
to evaluate semimoves separately.

Context variants

To partially overcome the weakness of less reliable samples, we introduce context
variants. They lead to storing values of samples closer to those used in the pure
orthodox design.

The main idea of MAST-context is entwined with N-gram-Average Sampling
Technique (NST ) [35]. It gathers statistics for fixed-size sequences of moves called
N-grams. MAST-context maintains statistics for submoves of different lengths. When
the iteration is over, for each move applied in the semisplit game, the statistics are
updated not only for that move but also for each of its prefix. The context of a state
is the submove from the last preceding nodal state to this state. Thus, a context is
a submove that is a prefix of some move. Hence, in MAST-context, while selecting
the best submove in the simulation phase, we use the statistics of the prefix of a
move obtained by concatenating the current context with the semimove.

In RAVE-context, nodes store an AMAF statistics for each child just as in the
regular RAVE. The difference is in updating AMAF, which updates the statistic of
a semimove only if the iteration contains the same semimove played in the same
context.

The context variants are available for every variant of MCTS because they store
statistics for all submoves that may be needed. However, they are useless in certain
variants where we do not need the statistics for semimoves. In particular, RAVE-
context is not useful in the case of the orthodox design in the MCTS phases, as only
the statistics for full moves are required. In this case, it is better to use RAVE-join
directly.

A particular advantage of RAVE-context is that it works well in the combination
with the roll-up variant. Each node stores AMAF for its context, independently of
whether and what nodes are on the path to the node from its nodal predecessor.
Therefore, if we remove an intermediate node and keep the AMAF value of its child,
it will be the same as if the tree structure did not contain the intermediate node
from the beginning.
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Mix variants

The fact that, for the same MCTS variants, we have more than one choice for variants
of action-based heuristics, lead to the possibility of using more of them simultane-
ously. The variants of the heuristics differ in the speed of gathering samples but also
in their quality, e.g., MAST-split gathers samples faster than MAST-context, but
they are more relevant in the latter. This leads to proposing mix variants, where we
combine the context variant with the split variant.

MAST-mix combines MAST-split with MAST-context and RAVE-mix com-
bines RAVE-split with RAVE-context. All nodes and semimoves are being updated
according to both split and context strategies. For both heuristics, we have an addi-
tional parameter called the mix-threshold. During the evaluation, when the number
(weight) of samples in the context heuristic is smaller than the mix-threshold, the
score is evaluated according to the split variant. Otherwise, the context statistics
are used. This also resembles NST, where statistics of n-grams are used only if the
number of samples reaches a certain threshold (which is proposed to be 7 for good
results) [35].

Available combinations

Table 2.1: Available combinations of the variants of MCTS and action-based heuris-
tics.

MCTS variant Standard Split Join Context
Tree Sim. MAST RAVE MAST RAVE MAST RAVE MAST RAVE

orthodox orthodox XJ XJ X – X X ZZXJ ZZXJ

orthodox semisplit – – X – – X X ZZXJ

semisplit orthodox – – X X X* – X X

semisplit semisplit XS XS X X – – X X

roll-up orthodox – – X – X* – X X

roll-up semisplit – – X – – – X X

S – equivalent to split variant
J – equivalent to join variant
AX – equivalent to another variant but less efficient than it, so useless
* – works without using MAST in the expansion phase

Table 2.1 summarizes possible variants of action-based heuristics depending on
the MCTS semisplit combination. As a general rule, a variant is available if it gathers
statistics required for the main MCTS phase where it is used (i.e., simulation phase
for MAST and tree phase for RAVE). The standard (straightforward) variants are
available only when the domain of moves is the same in both the MCTS tree phases
and the simulation phase.

MAST-split can work in all cases, as it can divide a move or its factor into a
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set of semimoves and supports evaluation of such a factor basing on the statistics of
semimoves. RAVE-split works only when the MCTS tree uses semisplit, as in other
cases it could not easily evaluate submoves that are not single semimoves (due to
technical difficulties and only small benefits expected, we do not propose such a
solution). MAST-join and RAVE-join can work whenever the simulation phase and
the tree phase, respectively, use the orthodox design. MAST-join can work when the
tree phase is not orthodox, but then it is not applied for the expansion phase. Finally,
MAST-context and RAVE-context can work in all cases, as they gather all statistics
that may be required. However, in some orthodox cases, they are fully equivalent to
the corresponding join variants and thus are inefficient due to gathering some useless
statistics (i.e., for semimoves). Of course, the mix variants are available precisely in
the combinations where both the split and the context variants are available, and
where the context variant is non-optimal, they can also use the join variant instead
(i.e., in the case of orthodox MCTS).





Chapter 3

Implementation for Regular
Boardgames

Deriving a semisplit game depends on the underlying implementation of a game
reasoner, i.e., the algorithm computing legal moves or semimoves. In this chapter,
we describe issues specific to implementing the semisplit algorithm for the Regular
Boardgames GGP framework. We discuss the representation of a move in RBG, split
strategies, used data structures, and the architecture of the agent.

3.1 Moves in Regular Boardgames

The agent uses the RBG compiler, which takes as the input a game description and
produces a reasoner for it. Depending on options, the resulting reasoner provides
generic functions for computing, for a given game state, the list of all legal moves
and/or the list of all legal semimoves.

A move in RBG is a sequence of pairs of two integers, which are an action index
and a board vertex. The second changes the current position at the board, whereas
the first indicates what is changed in the game state (i.e., either the content of the
current board vertex or the value of a variable). This provides a simple possibility
of split: a single semimove can be just one such pair. It leads to a very effective
representation of a semimove, as it is of a fixed length.

However, we may also need to test different ways of splitting. Thus, RBG sup-
ports split points that are put in the game description. Such split points act as
additional actions, and the interface allows to effectively compute a submove ending
with a split point or ending the move. Submoves computed by the reasoner can act
directly as semimoves in the semisplit game tree, or they can be further split, e.g.,
in MAST-split.

A semisplit game is derived by modifying the reasoning algorithm [20, Theo-
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rem 3], which stops at split points and/or at each action and reports a semimove.
Computing shorter semimoves is generally more effective, although it is also faster to
compute full moves directly instead of fusing all of them from semimoves as Alg. 1
does. The advantage of computing semimoves comes from not computing all full
moves.

We note that split points are artificial actions, in the sense that they do not non-
trivially modify the game state. Only the last split point in a submove has an effect,
thus when we concatenate submoves, we remove all split points in the middle. Also,
full moves never contain split points. This improves the efficiency but causes some
minor issues when action-based heuristics are used in combined semisplit variants.
For instance, in the orthodox MCTS tree design, we do not get split points, hence
they are not updated by MAST-split from that part of the iteration, but still they
are updated in the semisplit simulation phase.

3.2 Split strategies

Currently, RBG supports split strategies built from three components. They are
algorithms taking as the input a pure definition of the game rules (without any
heuristic information for good playing) thus can be considered knowledge-free. A
semisplit game is derived by modifying the reasoning algorithm [20, Theorem 3]
accordingly to compute semimoves instead of moves. The exact definition of split
strategies is out of the scope of this thesis, thus here we describe only the intuitive
meaning.

• Mod : This is a basic component of relatively low granularity. Every semimove
corresponds to an action modifying either a single square on the board or a variable.
Thus, each semimove becomes an elementary modification of the game state. A move
in a chess-like game is split into two semimoves, one for selecting and grabbing a
piece on the board, and one for dropping it on the destination square. For modifying
more squares, more semimoves are introduced, accordingly (e.g., Amazons). Also, it
separates the final decision, e.g., in Go the player first chooses whether to pass, and in
Pentago it first puts a ball and then selects a board and a rotation. If a move consists
of putting just one piece (e.g., Gomoku, Reversi), it is not split and a semisplit agent
plays the same as the orthodox one (except minor efficiency differences). Using Mod
allows assuming that semimoves are of a fixed size, which improves efficiency. An
example of the resulting semisplit game tree (up to minor differences) is shown in
Fig. 2.1(middle).

• Plus: This component introduces a semimove for every decision in the rules ex-
cept iterative ones. It commonly involves choosing the direction of the movement
(Amazons, Chess, English Draughts) and move type (capture or two movements
in Breakthru). It does not split iterative decisions such as stopping on a square
while moving in a direction (e.g., rook upwards move). An example of the resulting
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semisplit game tree (up to minor differences) is shown in Fig. 2.1(right).

• Shift : This component also splits square selection when it consists of more than
one decision. This commonly separates the selection of a column and a row on the
board (all games) and also divides movements of some pieces (e.g., knight – long
and short hops).

From the components, we can build split strategies such as Mod, ModShift or
ModPlusShift. The exact details of a particular split strategy depend, of course,
on the particular game description. The strategies can also introduce indecisive
semimoves, which do not alter the behavior of MCTS but affect efficiency, either
positively or negatively.

3.3 Data structures for action-based heuristics

MAST stores global statistics for each move. Updating and, in particular, reading
those statistics should be as fast as possible to avoid the situation in which the time
overhead from using MAST causes losings greater than benefits.

Probably the best general choice is a dictionary based on a hashtable. We use
a custom implementation of a hashtable with closed hashing, taking into account
its global character (adjusting the initial size and growth) and the domain of the
integers in actions.

However, in particular in the case of MAST-split, when we know that the do-
main of all possible semimoves is small, it can be replaced with a raw array.

MAST-context could be implemented with the same hashtable as is used for
full moves. However, it can be optimized, taking advantage of our specific appli-
cation. We use the fact that whenever a submove is stored in the hashtable, also
all its prefixes must have been already stored there since they have been applied
earlier. Furthermore, we have queried these prefixes right before processing the sub-
move. Thus, we instead of the full submove, we store pairs of the context and the
semimove. And the context is represented by the bucket id in the hashtable, which
uniquely represents a stored submove and is returned directly from the preceding
query. In this way, elements in the hashtable have a fixed length, and their hashing
and comparisons (in the case of conflicts) are cheaper.

RAVE uses similar structures, but it is enough to use a hash set instead of a
hash map, as we only need to query if a given move occurs at the bottom of the
iteration. In the case of RAVE-split, we use bit sets to encode this, taking advantage
of a relatively small domain of semimoves.



28 CHAPTER 3. IMPLEMENTATION FOR REGULAR BOARDGAMES

3.4 Architecture of the agent

The main part of the agent is written in C++17. Additionally, there is a Python
script that maintains the preparation and compilation of the main code.

The agent is run with a given configuration file that specifies the variant and all
the parameters of the algorithm. The procedure of preparing the agent for playing
a match is divided into several steps.

1. Connecting to game manager: At the beginning, the agent’s running script
(in Python) connects with the game manager and parses the chosen configu-
ration file.

2. Receiving game rules: When a sufficient number of agents are connected,
the game manager assigns roles to them, sends the time limit for preparation,
and sends the game rules.

3. Applying a split strategy: Based on the configuration file, the agent decides
how the reasoner should be generated, i.e., which split strategy and what
compiler flags should be used. Split strategies are applied by the agent by
calling an external utility to insert split points, before compiling the given
game description. It modifies the original game rules sent by the game manager
and creates a description of an equivalent semisplit game.

4. Compiling the game: The reasoner is generated by the RBG compiler on
the basis of the (modified) description of the game rules.

5. Customizing the agent code: A C++ header file is generated based on the
values of the parameters from the configuration file. This file consists of some
#define directives, constexpr variables, and type definitions. These values are
used for the conditional compilation of the main code. One of the advantages
of just-in-time compilation is that many conditional jumps can be avoided
when values of some parameters are known at compilation time. Moreover,
some data structures (e.g., an array for storing statistics in MAST-split) need
to know their initial size at compilation time. These values are known right
after the reasoner is generated.

6. Compiling the agent: On the basis of configuration file, a proper make target
and gcc flags are deduced and relevant command is executed. Each legal vari-
ant of MCTS combined with any suitable set of action-based heuristics has
its own make target. For these targets, different subsets of files with source
code are assigned to determine which tree design, data structures, simulation
policy, etc. should be used.

7. Running and connecting the main agent: The script runs the compiled
agent, which immediately connects to the script via a local connection. Then,
the ready status is sent to the game manager.
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8. Playing the game: After receiving this status from each agent, the game
manager starts a match by sending information with the time limit for the
first turn of the first player. From this point, the agent’s script acts as a link
between the manager and the script, transferring data between them.





Chapter 4

User guide

Besides the source code of the agent, there are other components that are needed to
perform a match between agents. The agent must connect to the game manager and
use the RBG compiler to generate reasoners. The experimental environment requires
RBG modules rbgGames, rbg2cpp, and rbggamemanager. The complete setup for
experiments, including the source code of the agent itself, is available at https:
//github.com/WoojtekP/rbgPlayer-experiments and can be easily downloaded
using the following commands:

$ git clone --recursive https://github.com/WoojtekP/rbgPlayer-experiments.git

$ cd rbgPlayer-experiments

$ git checkout BSthesis

Then, by running script prepare.sh, all components should be ready for ex-
periments.

4.1 Configuration file

The agent is configured through files in JSON format. A configuration file can contain
the following parameters:

• general : object – section to describe parameters common for all agents.

– buffer time : integer – time in milliseconds reserved by the agent for
communication with game manager and for choosing move to send.

– simulate during opp turn : bool – set to true, if iterations of MCTS
should be performed also during opponents’ turns.

– reasoning overhead : integer – multiplier for reasoning overhead. Values
greater than 1 are used to handicap an agent or for experimental purposes.
The parameter multiplies the cost of computing legal (semi)moves and
game states.
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• algorithm : object – section to describe the design used in particular phases
of MCTS.

– name : string – only MCTS is available.

– tree strategy : string – the design for the selection and expansion
phases.

– simulation strategy : string – the design for the simulation phase.

– split strategyS : string – the name of the applied split strategy.

– parameters : object – general parameters used to tune MCTS:

∗ exploration constant : float – the exploration constant of UCT.

∗ max semidepthS : integer – the maximal possible search depth for
nodal state.

∗ is nodalS : bool – set to true for the nodal variant; false denotes
the raw variant.

∗ min simulations factorR : float – the MSF parameter used in the
rollup variant.

• heuristics : object [] – an array of objects which describes details of heuris-
tics.

– name : string – the name of the heuristic variant.

– parameters : object – parameters used to tune the details.

∗ epsilonM : float – the value of ε used in the ε-greedy policy.

∗ decay factorM : float – the value of the decay factor used in the
move decay strategy.

∗ tree onlyM : bool – set to true, if statistics should be updated only
for (sub)moves applied in the selection phase (tree-only MAST ).

∗ equivalence parameterR : integer – tunes the balance of the average
score and AMAF score used in the modified UCB formula.

∗ refG : integer – the minimal number of simulations which is needed
to consider AMAF scores for a given (sub)move. If non-zero, this is
used in experimental TGRAVE heuristic, which is not used and not
described in this thesis.

S – enabled for split or rollup desing in any phase
R – enabled for rollup design
M – enabled for all MAST variants
R – enabled for all RAVE variants
G – enabled for TGRAVE
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4.2 Software requirements

Before compiling source code, one has to install:

• GNU make

• gcc (recommended version ≥ 7.5.0)

• boost (recommended version ≥ 1.67.0)

• python3 with scipy (recommended version ≥ 3.5.2)

4.3 Run experiments

To play out a tournament between two players, use script run matches.sh as follow:

$ ./run_matches.sh game player1 player2 boundtype bound plays

where:

• game – name of the game

• player1, player2 – names of configuration files placed in rbgPlayer/agents
directory, without .json suffix

• boundtype – one of:

– t – time limit given in milliseconds

– m – simulations limit

– s – states limit

– fmO, fsO, fsOMR - this type of bound uses suitable number of simula-
tions or states for specific games to run matches in which orthodox mcts
player (pure or with mast and rave) has approximately bound milliseconds
per turn

• bound – the value of limit of chosen type

• plays – number of pairs of plays (one with swapped agents) per thread

Example:

$ ./run_matches.sh breakthrough mcts_orthodox_orthodox_mast_rave \

mctsM_semisplitNodal_semisplit_mastsplit_rave fsOMR 500 10
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Logs are collected in logs directory. A script logreader.py can be used to
print logs in a readable format as follow:

$ python logreader.py logs

Another way to run matches among players is to run the game manager and
agents as separate processes. It gives an opportunity for tracking moves chosen by
agents on the fly, inspecting the number of simulations performed by agents in each
turn, checking statistics stored for moves, and easier debugging. From rbggamemanager
directory:

$ ./build/start_server game port [flags]

where:

• game – a path to file with description of the game rules in Regular Boardgames

• port – port at which game manager connects with agents

• flags – optional flags with their values:

– deadline – time limit in milliseconds to make a move in each turn.

– log results – stdout or path to file in which scores should be stored.

– log move – stdout or path to file in which performed moves should be
stored.

– limit – the number of matches to play. Note that a single run of the
game manager does not alternate players.

Example:

$ ./build/start_server ../rbgGames/games/amazons.rbg 7784 --deadline 500 \

--limit 10 --log_moves moves.txt --log_results stdout

Then, a sufficient number of agent processes must be run. From rbgPlayer
directory:

$ python play.py server-address server-port config-file [flags]

where:

• server-address - IP address of the game manager.

• server-port - the port of the game manager.

• flags – optional flags with their values:
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– simulations-limit – the limit of simulations for each turn.

– states-limit – the limit of states for each turn.

– release – run with maximal efficiency, but without debug traps.

– states – print statistics for legal moves after each turn.

– debug – run agent’s process with valgrind tool.

Using a simulations or states limit causes ignoring the time limit from the game
manager. Flags release, states and debug do not take any numeric values.
Example:

$ python play.py localhost 7784 agents/mcts_orthodox_semisplit.json \

--simulations-limit 1000 --release





Chapter 5

Experiments

We show experimental results from comparing agents. Here, by an agent, we mean
a particular configuration of our generic agent.

5.1 Technical setup

5.1.1 Parameters

All parameters of the tested agents were turned according to the recommendations
in the literature. Both orthodox and semisplit agents were using exactly the same
parameters set. This means that they may be not necessarily tuned for semisplit
agents, as they are originally recommended for orthodox agents in the literature.

The exploration constant in the UCT formula [33, (1)] was set to C = 0.4 [7].
We have also tried the second popular value C = 0.7, but it turned out to give worse
results than C = 0.4 in our setting and game set.

MAST uses the ε-greedy policy with ε = 0.4, i.e., with probability 0.6 it chooses
a (sub)move with the best average score. The decaying parameter was set to 0.2 [34].

In the case of MAST-mix, the mix-threshold was set to 7, as this value was
proposed for NST [35].

RAVE had its equivalence parameter set to 250 [33]. According to recommen-
dations, whenever RAVE was used (in all agent types), the exploration constant was
also set to C = 0.2.

The roll-up MSF parameter was set to 1.0, and the final roll-up selection was
not used, unless otherwise indicated. Finally, an agent does not compute (sleeps)
during the opponent’s turn.
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5.1.2 The setting

There are 240 plays in each test, where 120 plays are played with swapped agents.
The final win ratio is computed by assigning 1 point for a win, 0.5 for a draw, and
0 for a loss. Win ratios are given in percents.

The confidence intervals are given for 95% confidence based using a standard
method [14]. We say that an agent has better performance in a game if the average
result is above 50% and 50% is outside the confidence interval. Symmetrically, it
has worse performance if the average result is below 50% and it is outside the
confidence interval. If 50% lies within the confidence interval, an agent has similar
performance. Games from the test set where an algorithm has better, similar, and
worse performance are counted and given as an additional statistic besides the total
average win ratio. These are indicated in the form better :similar :worse.

In the timed experiments (timed setting), the time limit is set to 0.5s per turn,
unless otherwise stated. The buffer time is not included, i.e., this is the time limit
for pure computation; the real limit sent by the manager is 0.6s. In view of compu-
tational power, this roughly corresponds to the setting with 10s limit based on GDL
reasoning [19], which is often used [33].

There are also experiments with a fixed budget limit (fixed-states setting). We
limit the number of states that an agent can compute in its own turn. Only nodal
states are counted. The limits for each game are computed by benchmarking the
corresponding orthodox agent, measuring the number of states computed in the
first turn over 10s. In contrast with limiting the number of simulations, this better
corresponds to the timed setting, because of two reasons. First, the average length
of simulations may vary depending on whether the semisplit or orthodox design is
used. Second, the average length of simulations decreases as a game play advances,
since terminal states are closer.

5.1.3 Environment

The hardware used for the timed experiments was a grid belonging to the Institute of
Computer Science, University of Wrocław. 4 computer were used, each with Intel(R)
Core(TM) i7-4930K CPU @ 3.40GHz (6 cores) and between 16 and 32 GBi. The
system was Ubuntu 16.04.5 LTS (GNU/Linux 4.13.0-45-generic x86 64). The
relevant software was gcc 10.1.0, boost 1.67, and Python 3.5.2.

The tests of agents were performed with 6 plays in parallel (one process com-
putes 20 plays, giving 120 in total).

Because the experiments with fixed states limit do not depend on hardware
efficiency (i.e., are deterministic up to random seed), they were performed on other
computers.
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5.1.4 Agents

Semisplit agents were tested against the orthodox ones: both pure MCTS agent
(denoted by O) and the agent using MAST and RAVE (Otree:RAVEsim:MAST) were used as
baselines.

Our semisplit agents (i.e., using some split strategy; non-orthodox) are denoted
by S with indices describing the variant: “S” means the semisplit design and “O”
means the orthodox design, which can be independently used in the MCTS tree or
in simulations; “R” is the roll-up variant. There is also an indication if it is the raw
or nodal variant and if MAST and/or RAVE is used.

5.1.5 Game test set

Our test set consists of 15 games: Amazons, Breakthrough, Breakthru, Chess, Chess-
no check (i.e., Chess with king capture), English Draughts, Fox And Hounds, Go,
Gomoku, Hex, Knightthrough, Pentago, Reversi, Skirmish, and The Mill Game.
They are implemented in RBG and their codes can be found in rbgGames submodule
under the corresponding names.

We note that Gomoku, Hex, and Reversi are not split under Mod strategy nor
ModPlus strategy. Nevertheless, they are included in all tests for consistency and
comparability of the results. Also, while both orthodox and semisplit do the same
computation in these cases, they do not achieve the same performance, in particular,
due to a different (sub)move representation.

5.2 Results

In this section, we show the experimental results. Because of a vast number of
combinations to test, we focus on a selected subset of configurations.

5.2.1 Efficiency of agents

Table 5.1 demonstrates the efficiency differences between basic orthodox and semis-
plit agents, for a selection of games and Mod strategy. The results come from the
10s first-turn benchmark, i.e., measuring the number of states per second and the
maximum used memory during the first turn with 10s time limit. We can observe
significant speed-up in all cases. Also, the used memory stays relatively low, and it
is comparable in both agent types, often being lower in the semisplit agent.
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Table 5.1: A comparison of the efficiency (in time and memory) of basic orthodox
and semisplit agents.

Game
O Stree:S-nodalsim:S

States/sec. Memory (MBi) Speed-up Memory (MBi)

Amazons Mod 158,760 258 1,417 % 265

Breakthrough Mod 1,885,488 79 222 % 74

Breakthru Mod 6,392 6 26,786 % 20

Chess Mod 211,225 6 580 % 13

Chess-no check Mod 562,180 21 405 % 49

English Draughts Mod 2,886,068 150 134 % 83

Knightthrough Mod 1,500,851 261 295 % 164

The Mill Game Mod 1,630,673 132 252 % 150

5.2.2 Basic agents

Table 5.2 shows the average results of selected variants, together with information
about the number of games of better and worse performance. The results from the
timed setting are associated with those from the fixed setting. The latter shows the
results of semisplit agents apart from efficiency benefits.

We observe a large advantage of semisplit agents in most variants. Major ben-
efits come from the speed, as in the fixed setting the results are noticeably worse,
though still slightly above 50% in most cases. The Mod strategy is the best, and
ModShift is also good. Larger-granularity split strategies with the Plus component
give worse results, but this is due to performance overhead. In particular, altering
the game tree (in a blind way) by itself is not harmful on average, which is good
information supporting the semisplit algorithm, which usually improves the speed.

The best pure MCTS agents are Stree:S-rawsim:S and Stree:S-nodalsim:S with the Mod strat-
egy, whose results are very similar. In general, we consider the nodal variant slightly
better, taking into account the results for other split strategies, and because if the
raw variant has a small advantage, it is only due to its little better efficiency. Another
good agent is Stree:Osim:S , which takes the advantage just from the improved speed of the
simulation phase. For most of games it has a similar performance to the orthodox
agent, thus it can be considered as a safe choice.

Table 5.3 shows the results of selected variants of semisplit algorithms on a
selected subset of games. The simulation (flat MC) speed-up is also given. We can
observe how strongly the results vary depending on the game. For some games, the
semisplit design is inherently better; for others, it is worse than the orthodox design.
Surprising results were obtained for Chess and Chess-no check – while strategically
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Table 5.2: The average win ratios of semisplit variants without heuristics over the
whole test set together with the numbers of games of better:similar:worse perfor-
mance.

Agent Timed setting Fixed setting

vs. O

Stree:S-rawsim:S Mod 72.17 (11:2:2) 56.82 (6:5:4)

Stree:S-nodalsim:S Mod 71.39 (10:3:2) 57.39 (7:3:5)

Stree:Osim:S Mod 67.66 (12:2:1) 50.97 (4:9:2)

Stree:S-nodalsim:O Mod 58.21 (6:7:2) 56.61 (6:6:3)

Stree:R-nodalsim:S Mod 67.01 (10:3:2) 51.75 (4:7:4)

Stree:R-nodalsim:O Mod 51.70 (2:10:3) 52.09 (2:12:1)

Stree:S-rawsim:S ModPlus 62.89 (9:2:4) 57.42 (7:4:4)

Stree:S-nodalsim:S ModPlus 65.73 (9:3:3) 58.80 (7:4:4)

Stree:Osim:S ModPlus 60.05 (9:2:4) 51.58 (4:9:2)

Stree:S-nodalsim:O ModPlus 57.37 (6:7:2) 57.62 (6:7:2)

Stree:R-nodalsim:S ModPlus 57.99 (8:3:4) 53.15 (4:9:2)

Stree:R-nodalsim:O ModPlus 51.19 (1:13:1) 51.63 (2:12:1)

Stree:S-rawsim:S ModShift 66.23 (10:1:4) 54.64 (7:3:5)

Stree:S-nodalsim:S ModShift 65.56 (10:1:4) 54.39 (7:3:5)

Stree:Osim:S ModShift 69.04 (11:3:1) 49.54 (4:6:5)

Stree:S-nodalsim:O ModShift 53.63 (8:3:4) 56.22 (8:4:3)

Stree:R-nodalsim:S ModShift 65.45 (10:2:3) 48.49 (4:6:5)

Stree:R-nodalsim:O ModShift 47.25 (2:8:5) 50.03 (3:7:5)

Stree:S-rawsim:S ModPlusShift 58.42 (9:0:6) 51.75 (8:2:5)

Stree:S-nodalsim:S ModPlusShift 59.29 (9:1:5) 54.11 (8:2:5)

Stree:Osim:S ModPlusShift 59.97 (9:1:5) 50.40 (4:9:2)

Stree:S-nodalsim:O ModPlusShift 53.65 (6:5:4) 54.38 (8:3:4)

Stree:R-nodalsim:S ModPlusShift 57.15 (9:1:5) 48.98 (7:3:5)

Stree:R-nodalsim:O ModPlusShift 48.39 (2:10:3) 48.92 (2:10:3)

almost identical (the only real difference is the lack of stalemate), the former is
friendly for semisplit and the latter is hard.

An important variant is Stree:R-nodalsim:O ; it restricts the semisplit design to the
expansion phase, yielding a similar effect to unprunning methods [5], designed to deal
with a large branching factor. Indeed, Stree:R-nodalsim:O is strong in Breakthru (which has
a very large branching factor), yet similar in almost all other games. This concludes
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Table 5.3: Comparison of orthodox and semisplit agents for a selection of games
under the timed setting with 0.5s per move. 95% confidence intervals are shown.
The cases counted as of better performance are marked bold.

Game
Stree:S-nodalsim:S Stree:Osim:S Stree:S-nodalsim:O Stree:R-nodalsim:O

vs. O

Amazons Mod 98.3±1.6 98.3±1.6 78.8±5.2 55.0±6.3

Breakthrough Mod 55.4±6.3 62.5±6.2 50.8±6.4 50.0±6.4

Breakthru Mod 100 68.8±5.9 97.1±2.1 97.1±2.1

Chess Mod 96.0±2.3 95.4±2.5 58.5±5.9 40.6±5.9

Chess ModShift 96.9±2.1 98.3±1.5 62.5±5.8 44.4±6.0

Chess ModPlusShift 70.8±5.6 65.6±5.6 72.5±5.3 45.6±6.1

Chess-no check Mod 53.5±5.9 63.1±4.9 32.7±5.6 20.2±4.7

English Draughts Mod 45.4±3.9 54.8±3.6 43.1±3.6 52.9±4.0

Gomoku ModShift 97.9±1.8 92.9±3.3 67.9±5.9 48.8±6.4

Knightthrough Mod 91.2±3.6 80.0±5.1 72.5±5.7 51.7±6.4

The Mill Game Mod 39.4±5.6 44.0±5.4 51.2±5.4 54.0±5.4

that the semisplit’s effect on expansion alone is minor, yet it could be an alternative
and a quite safe method to overcome the large branching factor difficulty.

Fig. 5.1 shows how the win ratio changes for different time limits and in relation
to the fixed-states setting. Here, a general observation is that the results are kept
consistent for different time limits, thus the semisplit algorithm should generalize
well in this perspective.
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Figure 5.1: The results of Stree:S-nodalsim:S versus O for different time limits (red scores)
and for equivalent states budgets (blue scores).

5.2.3 Agents with heuristics

Concerning the MCTS with action-based heuristics, we focus on the Mod strategy,
as it appears generally the best. As there are many available combinations, we also
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test only a selected subset of them. We test agents obtained by adding heuristics to
Stree:S-nodalsim:S and Stree:Osim:S , which we consider to be most promising, based on previous
tests.

Table 5.4 shows the average results and Table 5.3 shows particular results for a
selected subset of games and two best agents. The average results are divided into
two groups: split/join variants and context variants. It seems that the best variants
are Stree:S-nodalsim:S,MAST and Stree:O,RAVE-joinsim:S,MAST-split. Surprisingly, the former does not use RAVE.
Apparently, RAVE does not combine so well with semimoves used in the MCTS
tree (cf. Stree:S-nodal,RAVEsim:S,MAST ). However, orthodox-tree and semisplit-simulation agents
show their additional advantage here, since RAVE works in them as in the orthodox
agent. They use RAVE on full moves, taking at the same time efficiency benefits
from semisplit simulations. Looking at particular games, Stree:O,RAVE-joinsim:S,MAST-split has worse
performance only in The Mill Game (which is an especially hard case for all semisplit
variants). Additionally, Stree:S-nodalsim:S,MAST-mix7 gives the best results in the fixed setting,
but its efficiency overhead does not let to outperform Stree:S-nodalsim:S,MAST.

Table 5.4: The average win ratios of selected semisplit variants with heuristics over
the whole test set together with the numbers of games of better:similar:worse per-
formance.

Agent Timed setting Fixed setting

vs. Otree:RAVEsim:MAST

Stree:S-nodal,RAVEsim:S,MAST Mod 52.73 (7:3:5) 43.97 (5:4:6)

Stree:O,RAVE-joinsim:S,MAST-split Mod 63.41 (11:3:1) 51.21 (4:8:3)

Stree:S-nodalsim:S,MAST Mod 67.52 (10:3:2) 54.11 (9:2:4)

Stree:Osim:S,MAST-split Mod 62.96 (9:1:5) 45.42 (3:5:7)

Stree:S-nodalsim:S Mod 63.54 (10:1:4) 40.63 (5:0:10)

Stree:Osim:S Mod 58.77 (9:1:5) 31.01 (2:0:13)

Stree:S-nodal,RAVE-contextsim:S,MAST-context Mod 41.95 (6:3:6) 37.00 (2:6:7)

Stree:S-nodalsim:S,MAST-context Mod 61.60 (10:1:4) 51.37 (7:3:5)

Stree:S-nodalsim:S,MAST-mix7 Mod 64.13 (11:2:2) 55.21 (4:8:3)

Stree:O,RAVE-joinsim:S,MAST-mix7 Mod 58.15 (7:7:1) 52.19 (4:8:3)

Stree:S-nodal,RAVE-contextsim:S Mod 43.38 (6:1:8) 29.69 (2:2:11)

5.2.4 Additional features

Finally, we present preliminary results concerning two specific variations. Here,
Gomoku, Hex and Reversi were removed from the test set, as in these cases the
agents in the fixed setting work, in principle, identically; thus we have 12 games.
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Table 5.5: Comparison of orthodox and selected semisplit agents with action-based
heuristics for a selection of games under the timed setting with 0.5s per move.
95% confidence intervals are shown. The cases counted as of better performance are
marked bold.

Game
Stree:O,RAVE-joinsim:S,MAST-split Stree:S-nodalsim:S,MAST

vs. Otree:RAVEsim:MAST

Amazons Mod 76.7±5.4 89.2±4.0

Breakthrough Mod 51.7±6.4 71.7±5.7

Breakthru Mod 100.0 100.0

Chess Mod 98.1±1.7 95.4±2.5

Chess ModShift 96.9±2.2 97.3±1.9

Chess ModPlusShift 24.6±5.1 19.8±4.8

Chess-no check Mod 54.8±5.6 50.2±6.0

English Draughts Mod 51.0±4.2 60.4±4.3

Gomoku ModShift 65.4±6.1 43.8±6.3

Knightthrough Mod 64.2±6.1 85.4±4.5

The Mill Game Mod 28.3±4.3 18.8±4.1

Table 5.6 shows the results of the orthodox agent with MAST-mix (which mixes
MAST-split samples with MAST-join). It seems that splitting can give noticeable
benefits even in the orthodox design. The results are best for Stree:Osim:O,MAST-mix7, giving
an overall improvement of 5%. Importantly, it is not due to using MAST-split itself,
but only due to mixing split samples with full move samples.

Table 5.6: The average win ratios of agents with the orthodox design combined with
MAST-split and MAST-mix over the set of 12 games together with the numbers of
games of better:similar:worse performance.

Agent Fixed setting

vs. Osim:MAST

Stree:Osim:O,MAST-split Mod 49.30 (2:8:5)

Stree:Osim:O,MAST-mix3 Mod 53.97 (3:11:1)

Stree:Osim:O,MAST-mix7 Mod 55.22 (2:13:0)

Stree:Osim:O,MAST-mix15 Mod 54.04 (3:12:0)

Stree:Osim:O,MAST-mix30 Mod 52.59 (3:11:1)
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Table 5.7 shows the results of Stree:S-nodalsim:S with different values of FRF parame-
ter. The differences in the results are very little and more tests are required to find
out if the final roll-up selection can slightly improve the results.

Table 5.7: The average win ratios of Stree:S-nodalsim:S agents with the final roll-up selection
over the set of 12 games together with the numbers of games of better:similar:worse
performance.

Agent Fixed setting

vs. O

Stree:S-nodalsim:S (baseline) Mod 59.42 (7:0:5)

Stree:S-nodal,FinalRollUp0.5sim:S Mod 58.87 (6:1:5)

Stree:S-nodal,FinalRollUp0.7sim:S Mod 58.98 (6:2:4)

Stree:S-nodal,FinalRollUp0.8sim:S Mod 57.85 (6:3:3)

Stree:S-nodal,FinalRollUp0.9sim:S Mod 59.16 (6:2:4)

Stree:S-nodal,FinalRollUp1.0sim:S Mod 59.00 (6:3:3)

Stree:S-nodal,FinalRollUp1.1sim:S Mod 59.81 (6:3:3)





Chapter 6

Conclusions

We have introduced a family of Monte-Carlo Tree Search variants that work on
semimoves – arbitrarily split game moves. The algorithm has been implemented in a
General Game Playing agent for the Regular Boardgames GGP system. The agent
supports many variations that allow comparing different approaches of using split
moves.

From the current experiments, the impact of using semisplit has been revealed
to be generally beneficial. First, it greatly improves search efficiency (a few times
more on average, up to even 31 times more states/sec.). Moreover, for many games,
the playing strength of a split-based MCTS agent is improved over its orthodox
counterpart, even when both algorithms are capped to the same performance. Even
using general and blind split strategies, we were able to obtain win rates higher
than 75% on about half of the test set (e.g., with Stree:S-nodalsim:S and Stree:S-nodalsim:S,MAST). Of
course, we have tested only a selected subset of variations of the semisplit algorithm
from a vast number of combinations. Thus, the results give just an initial insight.
The algorithm needs more investigation, which, however, requires more long-lasting
experiments.

This work opens a new way of improving game-playing algorithms, thus can be
seen as pioneering. It is widely applicable and there are many directions for future
research, e.g.:

• Action-based heuristics can be better adapted to semisplit in place of their
straightforward application. There are also other MCTS enhancements to be
combined with. Moreover, the used parameters were the same for both agent
types and were tuned rather for orthodox agents. This indicates that after a
tuning, semisplit should achieve even better results.

• There should be developed heuristic methods for choosing the most suitable
semisplit variant for a given game.

• Semisplit can be also combined with prior knowledge [10], which could com-
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pensate potential weakness but keep the efficiency. In particular, combining
with self-learning approaches is an interesting opportunity, but challenging
due to the altered domains of moves.
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