
ABSTRACT

ANALYSIS OF Q- LEARNING BASED GAME PLAYING AGENTS FOR ABSTRACT
BOARD GAMES WITH INCREASING STATE-SPACE COMPLEXITY

by Indrima Upadhyay

This thesis investigates Q-learning agents in a Reinforcement Learning framework for abstract
board games. The two key contributions are: exploring the training of Q-learning agents, and
a methodology to evaluate different agents playing abstract games. We focus on - Tic-Tac-Toe,
Nine-Men’s Morris, and Mancala, noting that each of these games is solved.

To train our Q-agent, we test the impact of a teaching agent (Q-learning twin, deterministic
Min-Max, and a non-deterministic Min-Max) based on the number of training epochs needed until
an agent converges. We find that a deterministic Min-Max is the best teaching agent, but a Q-
learning twin allows us to converge without needing a pre-existing agent. In training, we include a
methodology to create weaker agents for entertainment purposes.

To evaluate a range of competitive agents, we provide a methodology and conduct a round-
robin tournament. We find that a deterministic Min-Max agent scores maximum points for all three
games, the Q-learning based agent places second for both Tic-Tac-Toe and Nine Men’s Morris, and
a non-deterministic Min-Max places second for Mancala.

From these two contributions we summarize our conclusions and provide discussion on these
results and provide insight on how this space might be further investigated.
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Chapter 1 : Introduction

In this thesis, we examine the training and evaluation of board game agents. Our goal is to un-
derstand how an existing algorithm, Q-learning, performs as a game playing agent. We provide a
methodology to train and study this algorithm for three different abstract board games that increase
in complexity, and we provide a detailed methodology on how to train and evaluate Q-learning
agents.

Reinforcement Learning (RL) is a powerful model to create learning agents for complex prob-
lems. It is a research sub-area in the broader field of artificial intelligence (AI) where, in RL, an
agent attempts to maximize the total reward for its actions in an uncertain environment. The appli-
cation of RL in board games is interesting, because board games present simplified spaces where
we can test and observe a decision based agent. Also board games provide a competitive space
to compare different AI techniques all within a limited state-space complexity [1]. With a deeper
understanding of the performance of RL game agents with respect to changing state-space com-
plexity, we are able to evaluate AI techniques and provide insight on how to employ these agents in
a board game market. This includes providing a range of quality AI agents that are challenging for
players at all levels of skill, which allows a human player to improve, beat, and have fun playing
against.

Our goal is to explore the quantitative difference in the performance of RL based game playing
agents with changing state-space complexity of abstract board games. For this purpose, our game
playing agents are designed using Q-learning framework for three different games with different
state-space complexities. Each agent is trained against a range of AI agents (Min-Max, Q-learning,
and Random) to get a better understanding of how quickly we find convergence when training Q-
agent for a particular game.

Figure 1.1 shows the details of this thesis. First, we create a Q-learning agent that learns
to play three different games - Tic-Tac-Toe, Nine-Men’s Morris, and Mancala. Each of these
games is of an increased state-space complexity going from first to last. Chapter 2 talks about
the different kinds of agents used throughout this thesis, which are deterministic Min-Max agent,
non-deterministic Min-Max agent, Q-Learning based agent, and random agent, shown by boxes
labelled in yellow in Figure 1.1. The yellow outlined boxes in Figure 1.1 contain the names used
to refer each of the agent in the blue outlined boxes that talk about the methodology used for
evaluation of the agents, which will be discussed ahead. In chapter 3, boxes labelled in green
in Figure 1.1, we analyze our training approach. We report the number of training generations
needed when training is done against itself and opponent agents as trained by us. We hypothesize
that Q-learning will only be useful as an RL-based technique for a limited state-space complexity,
but each of these games chosen has been shown to be solvable, and we do not study this problem
beyond our game choices. However, training time increases as state complexity increases. We,
also, explore how quickly our agents train to convergence under different teaching agents. From
our trials we find that, deterministic Min-Max agent is the best teaching agent in terms of number
of training generations required for Tic-Tac-Toe, Nine Men’s Morris, and Mancala.

In chapter 3, boxes labelled in green in Figure 1.1, we also show our method to create weakened
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Figure 1.1: The mind map of the research.
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agents that will be used in the following chapter. Additionally, to confirm our hypothesis that
better teaching agents accelerate training we experiment with training our agent against weakened
versions of our Q-learning agent where each teaching agent has increasing number of training
generations going from first to last.

Boxes labelled in blue in Figure 1.1 show sections of chapter 4 where we describe our method-
ology to we compare agents when playing against each other for each of the three games- Tic-
Tac-Toe, Nine-Men’s Morris, and Mancala. Our approach is a round-robin tournament approach
where we can compare agents. To do this, we first need to determine what a reasonable numbers
of trial games is needed to conclusively determine the win to draw to loss ratio. We provide our
methodology for finding this number of trials for each game, and then use this methodology to
compare the range of agents we have against one another.

For this research, we use a General Game Playing (GGP) system, boxes labelled in pink in
Figure 1.1, that provide a program that can perform well across various types of games. We
specifically use the Ludii General Game System, as created by the Digital Ludeme Project (DLP),
that allows us to conduct experiments to investigate if there is a discernible difference in the per-
formance of game playing agents with different state-space complexity. We describe this game
playing system in the chapter 2.

The major contributions of this thesis are:

• An analysis of training a Q-learning RL agent in terms of finding convergence for solved
zero-sum abstract board games and evaluating training speed based on using a mirror of
itself versus a Min-Max agent and a random agent (Chapter 3). This includes how to select
parameters in the Q-learning algorithm.

• A method to create lower quality Q-learning based agents to allow human players to find a
competitive agent that can provide humans challenging opponents that are not too hard to
beat (Chapter 3)

• A method to create a round-robin tournament to evaluate the quality of agents, which in-
cludes a method to determine how many games must be played between opponents to find
stable results (Chapter 4)

The results of these contributions provide other RL researchers methods to properly evaluate
RL agents and use Q-learning based agents in the future for virtual game playing agents.

The thesis is organized as follows: Chapter 2 provides background on the use of RL in gaming,
the Ludii General game system, game complexity, the games explored for the purpose of this
research, followed by RL approaches for game playing agents including Q-Learning and Min-Max,
along with details of the API for developing game-playing agents in Ludii. Chapter 3 describes our
training approach and analysis of training Q-learning along with finding the number of generations
required by an agent to train for before the algorithm converges on ”the best solution”, what is the
”best solution”, and how to decide if an agent is good enough? Additionally, we show how to use
the converged agent to create lesser quality agents. Chapter 4 explains how we create a system
to evaluate agents. This includes a methodology on how to find the number of trials such that
evaluation of agents is stable. We then perform a round-robin tournament for each of the agents

3
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