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Abstract—We present the technical side of reasoning in Reg-
ular Boardgames (RBG) language – a universal General Game
Playing (GGP) formalism for the class of finite deterministic
games with perfect information, encoding rules in the form of
regular expressions. RBG serves as a research tool that aims to
aid in the development of generalized algorithms for knowledge
inference, analysis, generation, learning, and playing games. In
all these tasks, both generality and efficiency are important.

In the first part, this paper describes optimizations used by
the RBG compiler. The impact of these optimizations ranges
from 1.7 to even 33-fold efficiency improvement when measuring
the number of possible game playouts per second. Then, we
perform an in-depth efficiency comparison with three other
modern GGP systems (GDL, Ludii, Ai Ai). We also include
our own highly optimized game-specific reasoners to provide a
point of reference of the maximum speed. Our experiments show
that RBG is currently the fastest among the abstract general
game playing languages, and its efficiency can be competitive
to common interface-based systems that rely on handcrafted
game-specific implementations. Finally, we discuss some issues
and methodology of computing benchmarks like this.

Index Terms—General Game Playing, Game Description Lan-
guages, Regular Boardgames, Optimization, Benchmarks

I. INTRODUCTION

The idea of a generalized game playing (GGP) program,

the one with the ability to successfully play any given game

even such that it has not seen before, may be seen as a direct

descendant of the famous General Problem Solver created

by Simon, Shaw, and Newell in 1959 [1]. Although the first

published formalism starting a new domain of GGP research

is a work from 1968 by Pitrat [2] concerning a generalization

of chess-like games, which was followed in the 90s by Pell

and his Metagame approach [3], the real attention towards

the idea started in 2005 with the publication of Stanford’s

Game Description Language (GDL) and the announcement of

the annual International General Game Playing Competition

(IGGPC) co-located with AAAI conference [4], [5]. Since that

time, for almost a decade, Stanford’s GGP had been the lead-

ing field for developing generalized AI solutions, and a source

of numerous advancements in search [6], [7], knowledge rep-

resentation [8], [9], and other fields [10], [11]. In 2016, the last

(so far) IGGPC was held, given the number of GDL-related

publications was steadily decreasing, as researchers started
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shifting their attention to other topics. Today, however, we

apparently experience a General Game Playing renaissance. In

just a few years, several alternative languages and platforms

had been released – by multiple author groups, featuring a

variety of game types, based on diverse methodologies, and

with different purposes under consideration.

These new GGP platforms are made by hobbyists (Ai

Ai [12]), researchers (Regular Boardgames [13], Ludii [14]),

or even big companies like Google DeepMind (OpenSpiel

[15]) and Facebook (Polygames [16]). They range from

defining a limited number of boardgames (GBG [17]), any

turn-based games: perfect information deterministic (Regular

Boardgames) / nondeterministic with imperfect information

(Ludii), to Atari-like real-time games (ALE [18], GVGAI

[19]). Their methods for describing game rules vary from

using regular expressions and automata (Regular Boardgames),

a simple objective scripting language (GVGAI), high-level

keywords (Ludii), or using underlying game-specific im-

plementations in, e.g., Java (Ai Ai, GBG) / C++ (Open-

Spiel, Polygames). Some are aiming for efficiency, self-

containment, and generality under a uniform mechanism (Reg-

ular Boardgames), other for human-user game-playing expe-

rience (Ai Ai), a study on structure, history, and modeling

of games (Ludii), or support for generalized reinforcement

learning (OpenSpiel and Polygames).

In this work, we present the technical side of reasoning in

Regular Boardgames (RBG) language – a universal GGP for-

malism for the class of finite deterministic games with perfect

information, encoding rules in the form of regular expressions.

RBG serves as a research tool that aims in development

of general algorithms for games, which includes knowledge

inference and game analysis, learning, and playing algorithms.

In all these tasks, both generality and efficiency are important.

Generality is necessary to avoid solutions designed only for

specific game types, which have no chances to work on a new,

and previously unpredicted problem instances. Computational

efficiency makes every task more feasible, allowing e.g., a

more detailed analysis of the search tree – which increases

the playing strength of an AI agent.

RBG tries to achieve both goals. We explain how it reaches

a high level of performance, competitive even with some

manually implemented reasoners, while still describing games

completely in a general abstract form. We present the insights
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of the RBG compiler and its optimizations.

Then, we perform an in-depth efficiency comparison with

other popular and currently developed GGP systems. Addition-

ally, we include in the comparison our own highly optimized

game-specific reasoners of a few games under RBG interface.

The results from the benchmarks can be used as a point of

reference for both implementing a reasoner for a given game

and developing new general game playing systems. In the for-

mer, one can compare the efficiency of a game implementation

against various levels of optimization. As for the latter usage,

any GGP approach to be practical requires some amount of

fast reasoning. This efficiency survey shows where such a

system fits regarding its computational capabilities, and on

what types of games it behaves better or worse. It also points

out the set of games that is good to implement when aiming to

compare with other GGP systems. Finally, we discuss issues

and methodology of producing such benchmarks, such as the

impact of altering the formal game rules for different variants.

II. REGULAR BOARDGAMES

We briefly describe the main concepts of Regular

Boardgames. For the full formal definition, we refer to [13].

A game embedding in RBG consists of a board, variables,

player roles, and rules. The game state contains a configura-

tion of pieces on the board, values of the variables, the current

player, the current position on the board, and the current index

(position) in the rules. The board is a directed graph with

labeled edges, called directions. The current player, in his turn,

can perform a sequence of elementary actions, which, when

applied sequentially, can modify the game state in a specific

way. For an action to be legal, it must be both valid for the

current game state when it is applied and also permitted by

the rules. There are seven types of actions:

1) Shift, e.g., left or up, which changes the current

position on the board following the specified direction.

When there is no such edge, the action is invalid.

2) On, e.g., {whiteQueen}, which does not modify the

game state but checks if the specified piece is on the

board at the current position.

3) Off, e.g., [whiteQueen], which puts the specified piece

at the current position on the board. It is always valid.

4) Comparison, e.g., {$ turn==100}, which compares

two arithmetic expressions involving variables.

5) Assignment, e.g., [$ turn=turn+1], which assigns to

a variable the value of an arithmetic expression.

6) Switch, e.g., ->white, which changes the current player

to the specified one. This action ends a move.

7) Pattern, e.g., {? left up}, which is valid only if there

exists a legal sequence of actions under the specified

rules; in the example, if from the current square there is

a path with two edges labeled by left and up.

A sequence of actions ending with a switch defines a move.

Example 1: In Amazons, the following sequence of actions

defines a move with a (white) queen moving two squares up

and then shooting an arrow one square right.

{wQueen} [empty] up up [wQueen] right [arrow] -> black

Technically, a move is the subsequence of (indexed) actions

that are offs, assignments, and switches, together with the

positions in rules regular expression where they are applied.

These are precisely the actions that modify the game state,

except the board position and the rules index. Hence, the above

example defines a move of length 4.

A playout ends when the current player has no legal moves.

Then, each player’s score is given in a dedicated variable,

named the same as the player’s role. The rules are given by a

regular expression over the alphabet of the above actions. The

language defined by this expression contains all potentially

legal sequences of actions. For a concise encoding of the

regular expression, a description in RBG is described through

C-like macros that are instantiated for given parameters.

A. Example

A complete example of game Amazons is given in Fig. 1.

Its underlying nondeterministic finite automaton, processed by

the game compiler, is shown in Fig.2.

At the beginning of the description (Fig. 1, lines 1–14)

we define the players (and their maximal achievable scores),

pieces, variables (note that variables for players, containing

their current scores, are created automatically), and the board

graph with its initial state – in this case a rectangular board

with four possible movement directions. Then we define some

helpful, game-dependent macros. anySquare can change the

current position to any square on board, by first jumping an

arbitrary number of squares vertically, and then horizontally.

directedShift allows movement in direction dir (given as

a parameter) as long as the encountered squares are empty

(they contain piece e), but at least one step has to be made.

queenShift encodes all possible queen-like moves as a sum

of directed shifts. Note that we can pass any sequence of

tokens as a macro argument (in this case, two consecutive

directions that allow us to encode diagonal movements).

The main game logic, the turn macro (lines 23–28),

encodes a single turn for player me, whose queen pieces

are encoded as piece. It starts by switching the player to

ourselves, then switching the current square to any that contain

our queen. We pick up the queen making this square empty,

move it to the desired square, and put down. Then we find

another square that will be the destination for an arrow. The

->> gives control to the game manager (special role named

keeper), as the player has no more decisions to make. The

remaining steps put down the arrow (the x symbol) and set the

winning score for the last player. If the playout ends because

the current player has no legal moves, this stage will not be

reached and the previous player will win the game. Finally,

the overall rules of the game are encoded as a repetition of

the sequence of the white and the black player turns (line 29).

III. OPTIMIZATIONS IN RBG

The core of the RBG infrastructure is the compiler, which,

given an RBG game description as the input, generates a C++

module implementing a reasoner for this game. As in every

GGP system, the reasoner satisfies a common interface, which,



1 #players = white(100), black(100)

2 #pieces = e, w, b, x

3 #variables = // no variables

4 #board = rectangle(up,down,left,right,

5 [e, e, e, b, e, e, b, e, e, e]

6 [e, e, e, e, e, e, e, e, e, e]

7 [e, e, e, e, e, e, e, e, e, e]

8 [b, e, e, e, e, e, e, e, e, b]

9 [e, e, e, e, e, e, e, e, e, e]

10 [e, e, e, e, e, e, e, e, e, e]

11 [w, e, e, e, e, e, e, e, e, w]

12 [e, e, e, e, e, e, e, e, e, e]

13 [e, e, e, e, e, e, e, e, e, e]

14 [e, e, e, w, e, e, w, e, e, e])

15 #anySquare = ((up* + down*)(left* + right*))

16 #directedShift(dir) = (dir {e} (dir {e})*)
17 #queenShift = (

18 directedShift(up left) + directedShift(up) +

19 directedShift(up right) + directedShift(left) +

20 directedShift(right) + directedShift(down left) +

21 directedShift(down) + directedShift(down right)

22 )

23 #turn(piece; me; opp) = (

24 ->me anySquare {piece} [e]

25 queenShift [piece]

26 queenShift

27 ->> [x] [$ me=100, opp=0]

28 )

29 #rules = (turn(w; white; black) turn(b; black; white))*

Fig. 1. RBG encoding of Amazons (orthodox version, non-splitted).

in the case of RBG, allows computing legal moves, reading

parameters, accessing the board, etc.

A fundamental part of the reasoner is computing a list of

all legal moves. This is done through a DFS-based algorithm

[13, Theorem 9] on the automaton that is the NFA representing

the game rules joint with the board graph. A straightforward

implementation of the algorithm already provides a decent

level of efficiency, but, through a prior analysis of the game

rules, we were able to improve it significantly. We describe

here a few of the most important optimizations, which are

obtained by inferring knowledge from the game description.

Table I shows the results of four techniques.

1) Shift tables: Very often, traversing the board con-

sist of multiple shift actions, representing even com-

plex behavior. For instance, on a rectangular board,

(left* + right*)(up* + down*) allows changing the

current square into any square, and up* {! up} changes

the square to that in the top row but in the same column.

Obviously, the number of possibilities from such sequences is

limited. Each sequence of actions consisting only of shifts and

possibly patterns with shifts can be represented by a map that,

for each given square, stores a subset of allowed destination

squares. Hence, we replace each such sequence with one

elementary shift table action, which simply enumerates all the

possibilities with non-deterministic transitions. Additionally,

we can generate further simplifications if the shift table is

deterministic or does not depend on the current square.

Shift tables as a whole are the most important optimization,

which significantly affects every game.

2) Visited check skipping: The basic reasoning algorithm

requires that we check whether a pair of the current square and

the index in the rules has been already visited. Consider for in-
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Fig. 2. NFA represented by the Amazons description from Fig.1.

stance ((NW + NE + E + SE + SW + W) {x})* {! NW},

which checks whether from the current square there is a path

on squares with x to the north-west line (example from Hex).

Obviously, by applying actions we could return to the same

square and the same position in the rules. However, in many

typical cases, this is not possible. We can detect these cases

by analyzing the transitions in the joint automaton, and omit

checking visited pairs.

3) Bounding move length: Because of the straightness

condition that RBG description must satisfy [13], guaranteeing

that the game is finite and the number of legal moves if always

finite, the moves have a bounded maximal length measured in

the number of modifiers. For instance, in breakthrough, each

move has length 2, which corresponds to the selection of the

initial (picking up the pawn) and the destination squares. In

chess, the maximum move length is 7. We can use the limit

directly to define the move type structure having exactly this

optimal size, also avoiding any dynamic memory allocations.



We can easily calculate this limit if the joint automaton does

not contain cycles containing a modifier and not containing a

switch. For such games, we have a usually small upper bound

on the length of every move. In other case (an example is

the draughts family of games), such cycles could potentially

generate infinite moves, thus the straightness condition must

be satisfied non-trivially, and calculating the limit in general

is a PSPACE-hard problem (cf. [13, Theorem 10]).

4) Monotonic classes of moves: Sometimes, especially in

simple games, the bottleneck is the general interface itself. In

the case of RBG compiler, all legal moves must be generated

every time from scratch. Besides advantages like preserving

minimal game state representation, informative move content

(which contains a sequence of actions, in contrast to, e.g., a

pure move index), fixed ordering, and modifiable moves list, it

comes with an efficiency drawback in certain situations. In the

case of simple games with many moves, the cost of generating

them can be prevailing and thus get behind systems that admit,

e.g., only modifying the list of legal moves.

We develop the general concept of monotonicity classes,

which can deal with the above problem in several game types.

We will split the game states into classes such that they share

their legal moves. Let S be the set of all reachable game states

from the initial state, and for S ∈ S, let moves(S) be the set

of all legal moves. Let M =
⋃

S∈S
moves(S) (the set of all

possible moves). Now we define that a function c : S → N

is monotonic classifier if for every state S ∈ S, we have

moves(S′) ⊆ moves(S) for every state S′ ∈ S that is a

successor of S in the game tree with c(S) = c(S′). There

always exists a trivial monotonic classifier that assigns a dif-

ferent class number to each state. However, the smaller number

of assigned classes is better. A game description is k-move-

monotonic if there exists a monotonic classifier assigning at

most k class numbers. Obviously, the existence of monotonic

classifiers depends on the particular move representation.

Returning to RBG, a natural candidate to classify moves

are switches. For each switch, we need to check whether for a

game state with the rules index at this switch, the legal moves

are a superset of the legal moves of every successor game state.

We use several conditions for that, for example, if a move is

related to the specific content of a square (e.g., empty) and,

in the rules, this content is never added, then there will be

no new moves in the successor game states. The monotonicity

optimization also requires shift tables to detect if moves do not

depend on the current square. Using that, we can determine

that the game descriptions of, e.g., Connect4, Gomoku, and

Hex (without the pie rule) are 2-monotonic. Also, in Pentago

(split), we assign one monotonic class for the moves related to

rotation (the eight rotation moves are invariant), despite that

the placement moves cannot be assigned to the same class.

A. Efficiency Gain

Table I shows the impact of the described optimizations. We

show their importance in the final version by the efficiency

drop if an optimization is skipped. The effects of the opti-

mizations strongly correlate. Monotonic classes optimization

requires shift tables, thus there is no result for a variant with

only shift tables skipped. Also, as described before, some opti-

mizations (monotonic classes, bounding move length) provide

a boost only for specific types of games, and are neutral for

all the remaining ones; these cases are represented by 0%.

The most significant and universal optimization is shift

tables. The second one, not much behind it, is visited checks

optimization. They both affect every game. Bounding move

length is a decent optimization and affects only games where

moves have a bounded length by the rules and independently

on the board, but this is actually a large class of games.

Monotonic classes affect only simple games where moves are

very straightforward, but these are usually the cases where

listing all moves adds a significant computational cost.

Optimizations positively affect the computation time be-

cause they mostly reduce the amount of the generated C++

code, whose compilation is by far dominant. For example,

Chess with optimizations is compiled in 7.2s and without them

in 10.43s. In general, all the first three optimizations reduce the

compilation time, and monotonic classes leave it unaffected.

Except for monotonic classes, which require to store moves

along with the game state, the optimizations do not have any

real drawbacks, thus they should always be used.

IV. COMPARISON OF DIFFERENT SYSTEMS

A. Other GGP Approaches

Here we present in slightly more detail GGP systems that

will be used in our experiments. We can describe those systems

as belonging to three types of GGP approaches: “true” general

game playing, where the description language is “closed”

(e.g., GDL, Toss [20], Regular Boardgames); “hybrid”, that

describe games using an extendable set of generalized key-

words (Metagame [21], Ludi, VGDL [22], Ludii); and one

that just make use of a common interface for game-specific

implementations (Ai Ai, GBG, OpenSpiel, Polygames). These

categories are informal. Closed languages try to provide a

uniform and minimal mechanism so that each new game can

be effectively implemented purely in the proposed language.

Hybrid languages try to provide high-level concepts that cover

parts of game rules. As such, implementing a new game that

requires a new rule type usually needs an extension of the

language. The last type of systems just requires games to be

manually implemented in a usual programming language and

satisfying some interface. They also often provide parameteri-

zation of the rules. In theory, more game-specific code allows

more optimization, thus should result in higher efficiency.

The GGP systems we have chosen for the comparison are

the ones that are possibly very recent, currently developed,

and containing enough games to find a common test set, with

the exception of GDL, which is a classical example. Besides

Regular Boardgames, there has been no recent approach to

create a closed language for describing a large class of games.

We also performed experiments with OpenSpiel [15], how-

ever, given that this system during the playouts also computes

observation tensors makes the comparison unfair. Thus, we

decided not to include the results in this paper.



TABLE I
THE IMPACT OF SPECIFIC OPTIMIZATIONS OF THE RBG COMPILER (FLAT MC PLAYOUTS/SEC.).

Game
No No shift tables, No visited No bounding No monotonic All

optimizations no mon. classes check skipping move length classes opt.

Amazons 1,642 (-41%) 2,500 (-10%) 2,144 (-23%) 2,078 (-25%) ( 0%) 2,781

Amazons (split2) 9,340 (-48%) 12,264 (-32%) 14,818 (-18%) 15,682 (-13%) ( 0%) 18,084

Arimaa (split) 79 (-91%) 112 (-88%) 751 (-16%) ( 0%) ( 0%) 898

Breakthrough (8x8) 16,330 (-63%) 21,022 (-52%) 29,136 (-33%) 40,269 ( -8%) ( 0%) 43,575

Canadian Draughts 442 (-70%) 449 (-69%) 1,294 (-12%) ( 0%) ( 0%) 1,465

Chess (50-move rule) 249 (-73%) 370 (-60%) 656 (-30%) 854 ( -9%) ( 0%) 935

Connect4 271,240 (-66%) 351,767 (-56%) 604,614 (-25%) 765,700 ( -5%) 485,451 (-40%) 804,326

English Draughts 14,052 (-75%) 14,327 (-75%) 30,593 (-46%) ( 0%) ( 0%) 56,269

Gomoku (standard) 3,455 (-97%) 5,377 (-95%) 81,801 (-28%) 95,561 (-16%) 7,101 (-94%) 113,718

Knightthrough 27,193 (-59%) 35,254 (-46%) 47,637 (-28%) 52,469 (-21%) ( 0%) 65,823

Pentago (split) 16,854 (-63%) 20,782 (-54%) 43,207 ( -5%) 44,993 ( -1%) 42,942 ( -6%) 45,445

Tic-tac-toe 767,315 (-57%) 962,030 (-46%) 1,550,360 (-13%) 1,575,951 (-11%) 1,374,291 (-23%) 1,777,036

Apart from the other GGP systems that we described above,

for some games we had developed game-specific reasoners (in

C++) that implement the common RBG interface (currently,

the part of it necessary for computing moves and states). This

is an attempt to show possibly maximal reasoning efficiency.

The implementations are highly optimized with a lot of low-

level tricks designed for a single specific game.

1) Stanford’s GDL: GDL [5], used in IGGPC, is the most

well-known and deeply-researched game description language.

It can describe any turn-based, simultaneous-moves, finite, and

deterministic n-player game with perfect information. It is a

high-level, strictly declarative language based on Datalog.

GDL does not provide any predefined functions, meaning

that every predicate encoding the game structure must be

defined explicitly from scratch. As a result, the game de-

scriptions are usually long and hard to understand. Because

their processing requires logic resolution, it is also very

computationally expensive. In fact, many games expressible

in GDL could not be played by any program at a decent level.

Some games, due to computational cost, are not playable at all.

For example, features like longest ride in checkers or capturing

in go are difficult and inefficient to implement. In such cases,

only simplified rules are encoded (yet often they are available

in repositories under the standard name of the full game). GDL

has a number of independent reasoner implementations, among

which propnets [23] are considered the fastest.

2) Ludii: Although the Ludii system [14] (the successor

of Ludi, used to generate first market-selling AI-authored

boardgame [24]) has been designed primarily to chart the

historical development of games and explore their role in hu-

man culture, its latest versions came out with additional tools

for agent implementations, game visualizations and human

playing [25]. The language is based on a large number of

ludemes, conceptual units of game-related information, whose

behavior is encoded in the underlying Java implementation.

This makes the resulting games usually concise and well suited

for tasks such as procedural content generation, but hard to

understand without documentation of each ludeme, which is

already very long and constantly growing. Another drawback

is that a large but limited set of currently implemented ludemes

greatly hampers natural expressiveness and efficiency of more

complex and non-standard games that do not have dedicated

highly specialized building-blocks. On the positive sides, Ludii

comes with a large number of implemented games. The lan-

guage allows generation of generalized game-related content

such as human-playable GUI and various game/algorithm

analyzing tools. High-level ludemes are also an easy source

of heuristics, which Ludii agents can benefit, without the need

to detect game features in a knowledge-free manner.

The efficiency is similar to that of a GDL propnet, some-

times overcoming the latter. Ludii is closed-source with one

reference implementation provided, and due to the complica-

tion level, it is impractical to develop an independent branch.

3) Ai Ai: Stephen Tavener’s Ai Ai [12] is a closed source

program that allows playing abstract games versus both AI and

human opponents, with user-friendly visualization, multiple

options to customize, AI settings, and game analysis tools. It

is an advanced platform containing many games, and more

are being added all the time. Games can be hand-coded in

Java (for efficiency), or assembled from large blocks using the

MGL (Modular Game Language) – a scripting language based

on JSON. In practice, almost all of the games are programmed

directly in Java, so the resulting game engine is as fast as its

underlying implementation is optimized. Thus, although it is

considered as a general game playing approach, the reasoners

are game-specific with a common interface.

B. Technical Setup

All experiments were performed on a single core of

Intel(R) Core(TM) i7-4790 @3.60GHz of a computer with

16GB RAM. The GCC version was gcc (Ubuntu

7.5.0-3ubuntu1 18.04) 7.5.0 with boost

1.65.1.0. The Java version was Java(TM) SE

Runtime Environment (build 13.0.2+8).

Each test (one game) was a run of the flat MC algorithm,

yielding statistics of the average score of uniformly random



TABLE II
COMPARISON OF THE REASONING EFFICIENCY OF DIFFERENT GGP SYSTEMS. THE PERCENTAGE VALUES ARE RATIOS TO THE RBG COMPILER

(FLAT MC PLAYOUTS/SEC.).

Game GDL propnet Ludii 0.9.3 Ai Ai 4.0.2.0 RBG compiler 1.2 RBG game-specific 1.2

Amazons 4 (0.1%) – – 2,781 –

Amazons (split2) 365 ( 2%) 2,634 (15%) 13,724 ( 76%) 18,084 –

Arimaa (split) – 22 ( 2%)* 4,507 (501%)* 898 –

Breakthrough (8x8) 2,711 ( 6%) 2,344 ( 5%) 29,247 ( 67%) 43,575 157,333 (361%)

Canadian Draughts – 156 (11%)* – 1,465 –

Chess (50-move rule) 43 ( 5%) 88 ( 9%)* 248 ( 27%)* 935 –

Connect4 46,896 ( 6%) 38,544 ( 5%) 1,315,457 (164%)† 804,326† 2,139,403 (266%)†

Connect6 (split) – 1,192 ( 3%) 21,725 ( 55%) 39,330 –

English Draughts – – – 56,269 188,143 (334%)

English Draughts (split) 3,429 ( 6%) 2,830 (5%)* 84,751 (143%)* 59,335 231,252 (390%)

Gomoku (standard) 1,147 ( 1%) 4,091 ( 4%) 47,332 ( 42%) 113,718 –

Hex (9x9) 476 (0.8%) 9,259 (16%) 95,113 (165%) 57,508 –

Knightthrough (8x8) 4,913 ( 7%) 2,987 ( 5%) 68,250 (104%) 65,822 –

Pentago (split) 6,408 (14%) – – 45,445 –

Reversi 370 (3%) 757 ( 5%)* 53,866 (387%)* 13,910 182,228 (1,310%)

Skirmish (100 turns) 239 (3%) 848 (11%)* – 7,715 –

Yavalath – 49,060 ( 8%) 204,484 ( 32%) 636,032 –

* – the implemented rules are different from the version in RBG (explained in Subsection V-A).
† – see the issues described in Subsection V-B.

playouts for each legal move from the initial state of the game,

or just a run of random playouts for a given time, depending

on the system. The preprocessing time was not counted in

any case. The GGP system versions were the available ones

up-to-date on 4th June, 2020.

Each GDL propnet test constitutes of the average time of 10

runs lasting 10 minutes, not counting the preprocessing (aver-

aging is a proper practice here, because of non-deterministic

propnet construction). The used propnet implementation is by

C. Sironi based on ggp-base, currently not available online,

but some results were reported independently [23].

Each Ludii 0.9.3 test was performed via the command-

line option --time-playouts with default settings and

1 minute measuring time.

Each Ai Ai 4.0.2.0 test was performed through the

dedicated menu option MC Playouts/Second (This

Game), which measures over 100 seconds.

Each RBG 1.2 test lasted 1 minute and was

performed via the shared benchmark script (

rbg2cpp/run_benchmark.sh). A test of an RBG

game-specific reasoner was also 1 minute long, and it was

compiled with the same overlaying benchmark procedure used

for RBG; the package is included in RBG 1.2 release. This

version contains all optimizations described in Section III.

C. The Results

Table II shows the results of the main experiment. There is

a large gap between systems with abstract languages (GDL,

Ludii) and systems with game-specific implementations (Ai

Ai). RBG achieves similar performance to the latter, although

the values strongly vary depending on the game, which could

be explained by various levels of effort put in optimizing a

game-specific implementation. Our game-specific implemen-

tations are faster than almost everything else, showing that

automatically generated RBG reasoners still have optimization

potential, as the RBG interface is currently not a barrier.

V. IMPACT OF METHODOLOGY

In [26] we pointed out several issues concerning the method-

ology of the benchmarks in GGP; here, we discuss two

technical ones that particularly affected our experiment.

A. Influence of the Rules Implementation

An important issue is game matching, which needs special

care among different systems. By the same games we un-

derstand those that have isomorphic game trees. This includes

win/draw/loss distinction in terminal states. We made an effort

to match the games in RBG with the existing implementations

in GDL. In the other systems, some games have encoded

a different variation of the rules. Up to our knowledge, we

marked all these cases in Table II with a star. These differences

are relatively minor to provide a meaningful comparison,

basing on our subjective opinion and some internal tests with

game variations. A possible exception is Chess and Arimaa in

Ai Ai; they implement, among others, the threefold repetition

rule, which is costly. Also, Canadian Draughts in Ludii is

a split version. Nevertheless, the results could differ slightly

under an exact match. Example: English Draughts (split) in

RBG and GDL ends in a draw after 20 moves without moving

a man nor a capture. However, in Ludii, instead of that, there

is an internal hard turn limit set independently on the rules.

This is a minor difference, as ending a random playout in this

way is rare. As it is sadly not a standard for GGP systems

to provide exact specification of the rules or reliable game



statistics, most of such disparities are very hard to spot, thus

they influence the fairness of the published benchmarks. Here,

we would like to show some more detailed examples of how

heavily the reasoning efficiency can be altered by modifying

the game rules without changing their commonsense meaning.

Let us continue our example of Amazons. The orthodox

version under the standard interpretation is that the player’s

single turn consists of moving a queen and shooting an arrow.

Thus, the first player has 2176 possible moves, and the average

branching factor is 374 for the first player and 299 for the

second [27]. However, some implementations modify the rules

so the player turn is split in two: firstly a queen movement

is selected, and then an arrow shot from this queen. This

interpretation operates on the game tree that is not isomorphic

with the orthodox version, but it considerably reduces the

branching factor thus computation time [28]. The rules in RBG

encoding the described variant are shown in Fig. 3. Compared

to the orthodox version, in RBG, this split2 approach allows

more than 6 times faster simulations (see Table III).

Although split2 is, thanks to its straightforwardness, the

most popular unorthodox variant, there are many other pos-

sible reinterpretations of the rules. Another example based

on splitting player’s move into two parts (split2a in Tab. III)

chooses a queen and its movement direction in its first part,

and shifts all the remaining operations to the second part. This

version reaches similar efficiency as its predecessor. However,

it is possible to create other variants that will be significantly

faster. A variant named split5 (see Fig. 3 for its rules) starts

a new turn after nearly every atomic choice that guarantees

the correctness of the remaining playout. This variant is over

two times faster than split2. Table III shows the results for

even more variants based on the same orthodox encoding

of Amazons, visualizing the possible impact of the split-

based trick we described. All mentioned Amazon variants are

available in the RBG repository; they are obtained by a minor

modification of the encoding of the orthodox version.

The split2 variant of amazons (difference code):

23 #turn(piece; me; opp) = (

24 -> me anySquare {piece} [e]

25 queenShift [piece]

26 -> me queenShift

27 ->> [x] [$ me=100, opp=0]

28 )

The split5 variant of amazons (difference code):

16 #directedShift(dir; me) = (dir {e} -> me (dir {e})*)
23 #turn(piece; me; opp) = (

24 -> me anySquare {piece} {? anyNeighbor {e}} ->> [e]

25 -> me queenShift(me) ->> [piece]

26 -> me queenShift(me) ->> [x] [$ me=100, opp=0]

27 )

Fig. 3. Two unorthodox variants of Amazons in RBG.

B. Random Generators and Benchmark Procedures

When doing many simulations, the overlaying interface

becomes meaningful. We show this on a particular part

that is the random generator used to draw moves uniformly

TABLE III
COMPARISON OF EFFICIENCY OF DIFFERENT VARIANTS OF AMAZONS

(FLAT MC PLAYOUTS/SEC.).

Game RBG 1.2 speedup

Amazons (orthodox) 2,781 100%

Amazons (split2) 18,084 650%

Amazons (split2a) 18,108 651%

Amazons (split3) 34,934 1,256%

Amazons (split5) 38,694 1,391%

Amazons (split5+) 38,004 1,367%

in flat MC. This issue has never been raised before,

but it is quite noticeable when the number of turns per

second is large enough. In Table IV, we demonstrate

the possible impact of the generator, which includes the

random generator itself and an unbiased method for drawing

an integer from a range. There is the standard method

combining std::uniform_int_distribution with

std::mt19937 (used in the tests for Tables I–III), a

reimplemented Java method from java.util.Random,

and a modern unbiased drawing algorithm by

Lemire [29] combined with a fast Mersenne Twister

boost::random::mt11213b.

In our experiments, for RBG, we have used the default

method, which is usually the slowest of the three but probably

of the highest quality (based on the traditional measurement

of the period). The propnet, Ai Ai, and most likely also Ludii,

use the standard Java generator. Of course, there is a trade-

off between the quality and the speed, and different systems

use different methods. From our experience, the choice of

reasonable generator does not influence the quality of agent

nor change the statistics, but it impacts the cost of computing.

The impact becomes higher when the reasoning itself is faster.

In extreme cases, as Connect4, the cost of random move

selection can be dominating.

The issue does not concern only random generators, but the

whole benchmark procedure (with time measurements, gath-

ering statistics, etc.). For instance, the flat MC algorithm in Ai

Ai for Connect4 performs a much larger number of iterations

per second (we got even 3,428,427) than the benchmark report,

while other, more costly games reveal no noticeable difference.

Concluding, when reaching such a performance level, it is

difficult to provide a reliable benchmark. Nevertheless, in such

cases, we can expect that the cost of reasoning would be

negligible compared to any accompanying computation, and

then, the efficiency of reasoning loses its importance.

VI. CONCLUSION

Regular Boardgames is a modern general game playing

system aiming for efficiency and describing games via an ab-

stract, concise, and well-defined formal language. The shared

environment currently consists, in particular, of the game

compiler to C++, a network-based game manager, and a high-

level API allowing writing AI in Python. In this paper, we



TABLE IV
THE IMPACT OF THE USED RANDOM GENERATOR (FLAT MC PLAYOUTS/SEC.).

Game
RBG compiler RBG game-specific

Default method Java method Lemire’s method Default method Java method Lemire’s method

Breakthrough 43,575 42,738 34,917 157,332 182,547 144,175

Connect4 804,326 1,052,897 1,075,988 2,139,403 4,230,855 4,965,320

English Draughts 56,269 58,615 59,044 188,143 249,169 251,900

English Draughts (split) 59,335 62,506 65,182 231,252 295,987 296,895

Reversi 13,910 13,961 14,140 182,228 213,313 219,012

have described a few optimizations of the RBG compiler, as

one of the sources of its efficiency.

We performed extensive experiments comparing the effi-

ciency of five modern general game playing systems. We

conclude that RBG significantly outperforms systems based

on other abstract languages and has comparable (with a high

variation) performance to game-specific reasoners of other

systems as Ai Ai. By comparing with our hand-made game-

specific reasoners under the same interface, we demonstrated

that there is still potential for optimization. This leads to

the following research question: given game rules, how to

automatically produce an optimal reasoner? Our implemented

optimizations so far are just an infantile play around it.

The final issues discussed, so far overlooked, should help in

developing standardized benchmark methods concerning rea-

soners, which would allow fair, reproducible, and transparent

comparisons.
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